Persona:
Rubio Alvir, Eva María

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0001-8385-3540
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Rubio Alvir
Nombre de pila
Eva María
Nombre

Resultados de la búsqueda

Mostrando 1 - 3 de 3
  • Publicación
    The Role of Surfactant Structure on the Development of a Sustainable and Eective Cutting Fluid for Machining Titanium Alloys
    (MDPI, 2020-10-19) Benedicto Bardolet, Elisabet; Carou Porto, Diego; Santacruz, Coral; Rubio Alvir, Eva María
    A novel direct method based on infrared reflection absorption spectroscopy (IRRAS) and carbon elemental analysis has been developed for the quantitative determination of fatty acid ester on Ti6Al4V surface. The new approach involves the IR spectra and carbon analysis of a Ti6Al4V strip treated with a surfactant and ester emulsion adjusted to pH 9.2 with 2-aminoethanol. The results are dependent on the ester and surfactant concentration. The analytical signals are the integral value of the CH2 and CO signals of the IR spectra and the carbon content. The main advantage of the proposed method is that the analysis made directly on the metal surface allows knowing the film forming ability of the emulsion. The method may be useful for research and development of more environmentally friendly water-based metalworking fluids for the metal industry.
  • Publicación
    Formulation of SustainableWater-Based Cutting Fluids with Polyol Esters for Machining Titanium Alloys
    (MDPI, 2021-05-08) Benedicto Bardolet, Elisabet; Aubouy, Laurent; Saéz Nuño, María Ana; Rubio Alvir, Eva María
    The machinability of titanium alloys still represents a demanding challenge and the development of new clean technologies to lubricate and cool is greatly needed. As a sustainable alternative to mineral oil, esters have shown excellent performance during machining. Herein, the aim of this work is to investigate the influence of esters’ molecular structure in oil-in-water emulsions and their interaction with the surface to form a lubricating film, thus improving the efficiency of the cutting fluid. The lubricity performance and tool wear protection are studied through film formation analysis and the tapping process on Ti6Al4V. The results show that the lubricity performance is improved by increasing the formation of the organic film on the metal surface, which depends on the ester’s molecular structure and its ability to adsorb on the surface against other surface-active compounds. Among the cutting fluids, noteworthy results are obtained using trimethylolpropane trioleate, which increases the lubricating film formation (containing 62% ester), thus improving the lubricity by up to 12% and reducing the torque increase due to tool wear by 26.8%. This work could be very useful for fields where often use difficult-to-machine materials—such as Ti6Al4V or γ-TiAl—which require large amounts of cutting fluids, since the formulation developed will allow the processes to be more efficient and sustainable.
  • Publicación
    Sustainable Lubrication/Cooling Systems for Efficient Turning Operations of γ‑TiAl Parts from the Aeronautic Industry
    (Springer, 2023-05-01) Benedicto Bardolet, Elisabet; Aubouy, Laurent; Saéz Nuño, María Ana; Rubio Alvir, Eva María
    This paper presents the study of the finishing, repair, and maintenance turning operations of gamma titanium aluminide (γ-TiAl) parts from the aeronautic industry, with the aim to evaluate different sustainable lubrication/cooling environments, including a newly developed synthetic ester water-based metalworking fluid (EcoMWF) to replace mineral-based MWF (MWF). The systems considered in this work are dry, cold-compressed air, minimum quantity lubrication (MQL), cryogenic, and flood on turning of a new and relatively low explored titanium alloy, γ-TiAl. Therefore, the influence of machining parameters and insert type on tool wear, surface roughness, roundness, and cutting temperature have been investigated for each environment. Results detailed in this study showed a significant influence of the lubrication/cooling systems on the machinability of γ-TiAl. The study also revealed that the sustainability of turning γ-TiAl could be improved under the cryogenic system and the new EcoMWF, keeping the same machining performance as common mineral-based MWF.