Persona: Pastor Vargas, Rafael
Cargando...
Dirección de correo electrónico
ORCID
0000-0002-4089-9538
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Pastor Vargas
Nombre de pila
Rafael
Nombre
6 resultados
Resultados de la búsqueda
Mostrando 1 - 6 de 6
Publicación Automated IoT vulnerability classification using Deep Learning(2025-07) Sernández Iglesias, Daniel; Enrique Fernández Morales,; Garcia Merino, Jose Carlos; Tobarra Abad, María de los Llanos; Pastor Vargas, Rafael; Robles Gómez, Antonio; Sarraipa, JoaoTechnological advancements in the development of low-power chips have enabled everyday objects to connect to the Internet, giving rise to the concept known as the Internet of Things (IoT). It is currently estimated that there are approximately 16 billion IoT connections worldwide, a figure expected to double by 2030. However, this rapid growth of the IoT ecosystem has introduced new vulnerabilities that could be exploited by malicious actors. Since many IoT devices handle personal and sensitive information, threats to these devices can have severe consequences. Moreover, a series of cybersecurity incidents could undermine public trust in IoT technology, potentially delaying its widespread adoption across various sectors.Common Vulnerabilities and Exposures records (also known by their acronym as CVEs) is a public cataloging system designed to identify and list known security vulnerabilities in software and hardware products. This system is developed and maintained by MITRE with the support of the cybersecurity community and sponsored by the U.S. Department of Homeland Security (DHS) through the Cybersecurity and Infrastructure Security Agency (CISA). CVE provides a reference database that enables security researchers, manufacturers, and organizational security managers to more effectively identify and address security issues.In our study, we have focused on CVEs exclusively oriented towards IoT systems, with the aim of analyzing the main vulnerabilities detected from 2010 to nowadays as a basis for detecting the main attack vectors in IoT systems. As part of this effort we have created the following dataset. CVEs records include various metrics such as: - Common Weakness Enumeration (CWE), mainly focused on technical classification of vulnerabilities. - Common Vulnerability Scoring System (CVSS), which reports about different metrics such as the attack vector, the severity of the vulnerability or the impact level of the exploitation of the vulnerability. This is one of the most informative metric. - Stakeholder-Specific Vulnerability Categorization (SSVC), oriented towards help cybersecurity team to handle properly the vulnerability. These metrics allow security teams on the one hand to prioritize, such vulnerabilities within their security program, evaluating efforts to mitigate them. But according to our analysis of our dataset, around the 14% of CVEs records do not contain any metric. Around the 83% of CVEs registries contain CWE metric (an ID or its textual description). This metric, as it is explained before, only reports about the type of vulnerability from a technic point of view. Only the 10% of CVEs registries contain SSVC metrics. And CVSS, in its different versions, appears only in the 40% of the studied CVEs registries. Additionally, most of studied records includes metrics a retrospectively, several weeks or months later the vulnerability is disclosed. Thus, cybersecurity teams must trust their previous knowledge in order to distinguish which vulnerabilities are relevant and which not.To tackled this situation, our proposal is focused in the application of Deep Learning techniques in order to classify the severity of CVE records from its textual description. Textual description is a mandatory field that is present in all CVEs records. To achieve this objective, we trained the BiLSTM algorithm using the CVE records with CVSS metrics and its description field; and performed a comparative study of different hyperparameter configurations to find the optimal configuration. The metrics for model evaluation that have been studied are accuracy, loss and F1-score.Publicación Detection of Cerebral Ischaemia using Transfer Learning Techniques(IEEE) Antón Munárriz, Cristina; Haut, Juan M.; Paoletti, Mercedes E.; Benítez Andrades, José Alberto; Pastor Vargas, Rafael; Robles Gómez, AntonioCerebrovascular accident (CVA) or stroke is one of the main causes of mortality and morbidity today, causing permanent disabilities. Its early detection helps reduce its effects and its mortality: time is brain. Currently, non-contrast computed tomography (NCCT) continues to be the first-line diagnostic method in stroke emergencies because it is a fast, available, and cost-effective technique that makes it possible to rule out haemorrhage and focus attention on the ischemic origin, that is, due to obstruction to arterial flow. NCCT are quantified using a scoring system called ASPECTS (Alberta Stroke Program Early Computed Tomography Score) according to the affected brain structures. This paper aims to detect in an initial phase those CTs of patients with stroke symptoms that present early alterations in CT density using a binary classifier of CTs without and with stroke, to alert the doctor of their existence. For this, several well-known neural network architectures are implemented in the ImageNet challenges (VGG, NasNet, ResNet and DenseNet), with 3D images, covering the entire brain volume. The training results of these networks are exposed, in which different parameters are tested to obtain maximum performance, which is achieved with a DenseNet3D network that achieves an accuracy of 98% in the training set and 95% in the test setPublicación Researchers’ perceptions of DH trends and topics in the English and Spanish-speaking community. DayofDH data as a case study(Jagiellonian University & Pedagogical University (Cracovia), 2016-07-22) González-Blanco García, Elena; Rio Riande, Gimena del; Robles Gómez, Antonio; Ros Muñoz, Salvador; Hernández Berlinches, Roberto; Tobarra Abad, María de los Llanos; Caminero Herráez, Agustín Carlos; Pastor Vargas, RafaelPublicación Dataset Generation and Study of Deepfake Techniques(Springer, 2023) Falcón López, Sergio Adrián; Robles Gómez, Antonio; Tobarra Abad, María de los Llanos; Pastor Vargas, RafaelThe consumption of multimedia content on the Internet has nowadays been expanded exponentially. These trends have contributed to fake news can become a very high influence in the current society. The latest techniques to influence the spread of digital false information are based on methods of generating images and videos, known as Deepfakes. This way, our research work analyzes the most widely used Deepfake content generation methods, as well as explore different conventional and advanced tools for Deepfake detection. A specific dataset has also been built that includes both fake and real multimedia contents. This dataset will allow us to verify whether the used image and video forgery detection techniques can detect manipulated multimedia content.Publicación Forensic Technologies to Automate the Acquisition of Digital Evidences(IEEE, 2022) García Guerrero, David; Tobarra Abad, María de los Llanos; Robles Gómez, Antonio; Pastor Vargas, RafaelThe main goal of this work is to propose the automatic acquisition of evidences in a remote way. This automated capacity becomes interesting for companies with extensive networks and/or several locations, as it allows them to delegate and centralize the acquisition task at a single point in their structure, while saving time and travel costs. This research has been carried out through the initial implementation of a virtual laboratory made up of a network and different scenarios, by including an experimentation process. The virtual network includes both the machine from which automatic acquisitions are performed and the devices from retrieving the evidence. The group of devices will be made up of various experiments. The aim is to analyze the viability of the acquisition in different scenarios, since distributed networks are not homogeneous in the real worldPublicación Teaching cloud computing using Web of Things devices(IEEE, 2018) Carrillo, J. Cano; Pastor Vargas, Rafael; Romero Hortelano, Miguel; Tobarra Abad, María de los Llanos; Hernández Berlinches, RobertoThis work deals with the teaching of the innovative technology, named cloud computing, using the Web of Things (WoT) platform model based on web services. These services are designed and programmed by the students to handle embedded hardware devices (things) on Internet. The course is carried out within a makerspace where our students can take advantage of valuable on-line tools which are available in a collaborative learning environment. The introduction of these innovative technological elements improves the students' interest and engagement leading to achieve better learning results.