Persona:
Pastor Vargas, Rafael

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0002-4089-9538
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Pastor Vargas
Nombre de pila
Rafael
Nombre

Resultados de la búsqueda

Mostrando 1 - 1 de 1
  • Publicación
    eXplicability AI (XAI) for Attack Detection toward Smart Rural Applications
    (Elsevier, 2025-10-20) Fernández-Morales, Enrique; Tobarra Abad, María de los Llanos; Robles Gómez, Antonio; Pastor Vargas, Rafael; Hernández Berlinches, Roberto; Sarraipa, Joao; Financiado por INCIBE en el contexto del Plan de Recuperación, Transformación y Resiliencia de la Unión Europea (NextGenerationEU/PRTR)
    This research evaluates the performance and computational efficiency of various AI models for intrusion detection in IoT environments, with the goal of enabling future deployment in Smart Rural scenarios. Leveraging the massive NF-UQ-NIDS-v2 dataset-comprising over 76 million labeled NetFlow records across 21 traffic classes-we benchmark five models, ranging from classical machine learning algorithms to deep learning architectures, across both high-performance and low-performance execution setups. The analysis covers standard classification metrics (accuracy, precision, recall, F1-score) and detailed resource usage indicators, including inference time, memory footprint, CPU cycles, and energy consumption per batch. Additionally, explainable AI techniques (SHAP and LIME) are employed to investigate model behavior and feature relevance under real-world constraints. Results show that classical models, particularly Random Forest and Decision Tree, achieve top-tier detection accuracy while maintaining minimal computational demands, making them strong candidates for constrained deployments. Deep learning models deliver comparable predictive performance but incur significantly higher resource consumption, requiring further optimization for practical use. Overall, this work provides a comprehensive evaluation framework and practical insights for selecting efficient and interpretable AI-based intrusion detection systems for rural and low-resource infrastructures.