Persona: Tajuelo Rodríguez, Javier
Cargando...
Dirección de correo electrónico
ORCID
0000-0002-4085-7610
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Tajuelo Rodríguez
Nombre de pila
Javier
Nombre
4 resultados
Resultados de la búsqueda
Mostrando 1 - 4 de 4
Publicación Single bubble and drop techniques for characterizing foams and emulsions(Elsevier, 2020-12-01) Chandran Suja, V.; Fuller, G. G.; Rodríguez Hakim, Mariana; Tajuelo Rodríguez, JavierThe physics of foams and emulsions has traditionally been studied using bulk foam/emulsion tests and single film platforms such as the Scheludko cell. Recently there has been a renewed interest in a third class of techniques that we term as single bubble/drop tests, which employ isolated whole bubbles and drops to probe the characteristics of foams and emulsions. Single bubble and drop techniques provide a convenient framework for investigating a number of important characteristics of foams and emulsions, including the rheology, stabilization mechanisms, and rupture dynamics. In this review we provide a comprehensive discussion of the various single bubble/drop platforms and the associated experimental measurement protocols including the construction of coalescence time distributions, visualization of the thin film profiles and characterization of the interfacial rheological properties. Subsequently, we summarize the recent developments in foam and emulsion science with a focus on the results obtained through single bubble/drop techniques. We conclude the review by presenting important venues for future research.Publicación Asphaltene-induced spontaneous emulsification: Effects of interfacial co-adsorption and viscoelasticity(American Institute of Physics, 2020-07-01) Anand, Satyam; Yao, Zhen; Kannan, Aadithya; Fuller, Gerald G.; Rodríguez Hakim, Mariana; Tajuelo Rodríguez, JavierAsphaltenes are a class of high molecular weight aromatic compounds found in crude oil. They adsorb onto toluene-water interfaces and induce a spontaneous emulsification phenomenon, whereby stable water-in-oil emulsions form without the need of an external energy input. This work aims to control and understand the factors affecting spontaneous droplet formation in the presence of asphaltene adsorption. This is particularly useful for crude oil refining, where the presence of a stable emulsion hampers the efficiency of downstream processing operations. We explore the effect of the addition of copolymers designed as crude oil flow improvers as a means to control the extent of emulsion formation. We find that the polymers competitively adsorb onto the toluene-water interface and diminish spontaneous emulsification. We also conduct fluorescence microscopy experiments and measurements of the interfacial energy to determine the mechanism of spontaneous emulsification in asphaltene systems. We conclude that an emulsion forms via the diffusion of molecular water into the oil phase and subsequent binding with asphaltene aggregates, leading to the nucleation of micrometer-sized water droplets. We find that the polymer forms complexes with the dissolved asphaltenes, possibly hampering the ability of diffused water to bind to the asphaltenes and reducing the extent of spontaneous emulsification. Finally, we investigate the role of interfacial shear and dilatational viscoelasticity to better understand which fundamental interfacial properties are important in the emulsification of asphaltene-laden systems. We find that the rate of formation of an interfacial microstructural network is inversely correlated with the extent and rate of spontaneous emulsification.Publicación Flow field-based data analysis in interfacial shear rheometry(Elsevier, 2021-02) Sánchez Puga, Pablo; Pastor Ruiz, Juan Manuel; Tajuelo Rodríguez, Javier; Rubio Álvarez, Miguel ÁngelDevelopments in interfacial shear rheometers have considerably improved the quality of experimental data. However, data analysis in interfacial shear rheometry is still an active field of research and development due to the intrinsic complexity introduced by the unavoidable contact of the interface with, at least, one supporting bulk subphase. Nonlinear velocity profiles, both at the interface and the bulk phases, pervade the system dynamical behavior in the most usual experimental geometries, particularly in the case of soft interfaces. Such flow configurations demand data analysis schemes based on the explicit calculation of the flow field in both the interface and the bulk phases. Such procedures are progressively becoming popular in this context. In this review, we discuss the most recent advances in interfacial shear rheology data analysis techniques. We extensively review some recently proposed flow field-based data analysis schemes for the three most common interfacial shear rheometer geometries (magnetic needle, double wall-ring, and bicone), showing under what circumstances the calculation of the flow field is mandatory for a proper analysis of the experimental data. All cases are discussed starting at the appropriate hydrodynamical models and using the equation of motion of the probe to set up an iterative procedure to compute the value of the complex Boussinesq number and, from it, the complex interfacial viscosity or, equivalently, the complex interfacial modulus. Moreover, two examples of further extensions of such techniques are proposed, concerning the micro-button interfacial shear rheometer and the potential application of interfacial rheometry instruments, together with adapted flow field-based data analysis techniques, for bulk rheometry, particularly in the case of soft samples.Publicación A numerical model for the simulation of complex planar Newtonian interfaces(Elsevier, 2025-01) Esteban Paz, Adolfo; Hernández Rodríguez, Julio; Tajuelo Rodríguez, Javier; Rubio González, Miguel ÁngelWe present a numerical model for the simulation of complex planar interfaces at which moving solid objects can be immersed, reproducing a wide variety of experimental conditions. The mathematical model consists of the Navier-Stokes equations governing the incompressible viscous flow in the liquid subphase, the transport equation for the evolution of the surfactant concentration at the interface, and the interfacial stress balance equation. The equations are simplified by treating the problem as isothermal and the surfactant as insoluble. The bulk flow equations are discretized using a collocated finite volume method, while the interfacial flow equations are discretized using a finite area method. The Boussinesq-Scriven interface constitutive model and a variant form accounting for extensional viscosity are used to describe the extra surface stress tensor. The coupling between surfactant concentration, interfacial velocity, and bulk velocity is treated implicitly by solving the interfacial and bulk equations sequentially at each time step until a stopping criterion is satisfied. The motion of the solid is treated by an arbitrary Lagrangian- Eulerian method. The model has been implemented in the OpenFOAM framework and allows the incorporation of new interface models and solvers, making the developed new package a versatile and powerful tool in the field of computational rheology. Applications of the model include the numerical simulation of flow around objects, such as probes, immersed at a complex interface, reproducing given experimental conditions, and its use as a tool in the analysis and design of interfacial stress rheometers. Several test cases have been performed to validate the model by comparing the results obtained with analytical solutions and with numerical and experimental results available in the literature.