Persona: Schames Kreitchmann, Rodrigo
Cargando...
Dirección de correo electrónico
ORCID
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Schames Kreitchmann
Nombre de pila
Rodrigo
Nombre
4 resultados
Resultados de la búsqueda
Mostrando 1 - 4 de 4
Publicación Exploring Approaches for Estimating Parameters in Cognitive Diagnosis Models with Small Sample Sizes(MDPI, 2023-04-27) Sorrel, Miguel A.; Escudero, Scarlett; Nájera, Pablo; Vázquez Lira, Ramsés; Schames Kreitchmann, RodrigoCognitive diagnostic models (CDMs) are increasingly being used in various assessment contexts to identify cognitive processes and provide tailored feedback. However, the most commonly used estimation method for CDMs, marginal maximum likelihood estimation with Expectation–Maximization (MMLE-EM), can present difficulties when sample sizes are small. This study compares the results of different estimation methods for CDMs under varying sample sizes using simulated and empirical data. The methods compared include MMLE-EM, Bayes modal, Markov chain Monte Carlo, a non-parametric method, and a parsimonious parametric model such as Restricted DINA. We varied the sample size, and assessed the bias in the estimation of item parameters, the precision in attribute classification, the bias in the reliability estimate, and computational cost. The findings suggest that alternative estimation methods are preferred over MMLE-EM under low sample-size conditions, whereas comparable results are obtained under large sample-size conditions. Practitioners should consider using alternative estimation methods when working with small samples to obtain more accurate estimates of CDM parameters. This study aims to maximize the potential of CDMs by providing guidance on the estimation of the parameters.Publicación Enhancing Content Validity Assessment With Item Response Theory Modeling(Colegio Oficial de Psicólogos del Principado de Asturias, 2024) Nájera, Pablo; Sanz, Susana; Sorrel, Miguel Ángel; Schames Kreitchmann, RodrigoAntecedentes: Garantizar la validez de evaluaciones requiere un examen exhaustivo del contenido de una prueba. Es común emplear expertos en la materia (EM) para evaluar la relevancia, representatividad y adecuación de los ítems. Este artículo propone integrar la teoría de respuesta al ítem (TRI) en las evaluaciones hechas por EM. La TRI ofrece parámetros de discriminación y umbral de los EM, evidenciando su desempeño al diferenciar ítems relevantes/ irrelevantes, detectando desempeños subóptimos, mejorando también la estimación de la relevancia de los ítems. Método: Se comparó el uso de la TRI frente a índices tradicionales (índice de validez de contenido y V de Aiken) en ítems de responsabilidad. Se evaluó la precisión de los EM al discriminar si los ítems medían responsabilidad o no, y si sus evaluaciones permitían predecir los pesos factoriales de los ítems. Resultados: Las puntuaciones de TRI identificaron bien los ítems de responsabilidad (R2 = 0,57) y predijeron sus cargas factoriales (R2 = 0,45). Además, mostraron validez incremental, explicando entre 11% y 17% más de varianza que los índices tradicionales. Conclusiones: La TRI en las evaluaciones de los EM mejora la alineación de ítems y predice mejor los pesos factoriales, mejorando validez del contenido de los instrumentos.Publicación Improving reliability estimation in cognitive diagnosis modeling(Springer, 2023-10-01) Torre, Jimmy de la; Sorrel, Miguel A.; Nájera, Pablo; Abad, Francisco; Schames Kreitchmann, RodrigoCognitive diagnosis models (CDMs) are used in educational, clinical, or personnel selection settings to classify respondents with respect to discrete attributes, identifying strengths and needs, and thus allowing to provide tailored training/treatment. As in any assessment, an accurate reliability estimation is crucial for valid score interpretations. In this sense, most CDM reliability indices are based on the posterior probabilities of the estimated attribute profiles. These posteriors are traditionally computed using point estimates for the model parameters as approximations to their populational values. If the uncertainty around these parameters is unaccounted for, the posteriors may be overly peaked, deriving into overestimated reliabilities. This article presents a multiple imputation (MI) procedure to integrate out the model parameters in the estimation of the posterior distributions, thus correcting the reliability estimation. A simulation study was conducted to compare the MI procedure with the traditional reliability estimation. Five factors were manipulated: the attribute structure, the CDM model (DINA and G-DINA), test length, sample size, and item quality. Additionally, an illustration using the Examination for the Certificate of Proficiency in English data was analyzed. The effect of sample size was studied by sampling subsets of subjects from the complete data. In both studies, the traditional reliability estimation systematically provided overestimated reliabilities, whereas the MI procedure offered more accurate results. Accordingly, practitioners in small educational or clinical settings should be aware that the reliability estimation using model parameter point estimates may be positively biased. R codes for the MI procedure are made availablePublicación FoCo: una aplicación Shiny para la evaluación formativa usando modelos de diagnóstico cognitivo(Colegio Oficial de la Psicología de Madrid, 2023-05-03) Sanz, Susana; Nájera, Pablo; Moreno, José David; Sorrel, Miguel A.; Schames Kreitchmann, Rodrigo; Martínez Huertas, José ÁngelLa combinación de evaluaciones formativas y sumativas podría mejorar la evaluación. El modelado de diagnóstico cognitivo (MDC) se ha propuesto para diagnosticar fortalezas y debilidades de estudiantes en la evaluación formativa. Sin embargo, ningún software permite implementarlo fácilmente. Así, se ha desarrollado FoCo (https://foco.shinyapps.io/FoCo/), permitiendo realizar análisis MDC y teoría clásica de tests. Se analizaron respuestas de 86 estudiantes de grado a un examen de métodos de investigación, diagnosticándose sus fortalezas y necesidades en cuanto a su dominio de los contenidos de la asignatura y las tres primeras competencias de la taxonomía de Bloom y se analizó la validez de los resultados. El análisis ha sido informativo, ya que para estudiantes con puntuaciones similares ha sido posible detectar diferentes fortalezas y debilidades. Además, se encontró que estos atributos predicen criterios relevantes. Se espera que FoCo facilite el uso de MDC en contextos educativos.