Persona:
Rodríguez Laguna, Javier

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0003-2218-7980
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Rodríguez Laguna
Nombre de pila
Javier
Nombre

Resultados de la búsqueda

Mostrando 1 - 2 de 2
  • Publicación
    Ergotropy and entanglement in critical spin chains
    (American Physical Society, 2023-02-08) Mula, Begoña; Fernández, Julio J.; Santalla, Silvia N.; Alvarellos Bermejo, José Enrique; García Aldea, David; Rodríguez Laguna, Javier; Fernández Sánchez, Eva María
    A subsystem of an entangled ground state (GS) is in a mixed state. Thus, if we isolate this subsystem from its surroundings, we may be able to extract work applying unitary transformations, up to a maximal amount which is called ergotropy. Once this work has been extracted, the subsystem will still contain some bound energy above its local GS, which can provide valuable information about the entanglement structure. We show that the bound energy for half a free fermionic chain decays as the square of the entanglement entropy divided by the chain length, thus approaching zero for large system sizes, and we conjecture that this relation holds for all one-dimensional critical states.
  • Publicación
    Casimir forces on deformed fermionic chains
    (American Physical Society, 2021-01-20) Mula, Begoña; Santalla, Silvia N.; Rodríguez Laguna, Javier
    We characterize the Casimir forces for the Dirac vacuum on free-fermionic chains with smoothly varying hopping amplitudes, which correspond to ( 1 + 1 )-dimensional [( 1 + 1 )D] curved spacetimes with a static metric in the continuum limit. The first-order energy potential for an obstacle on that lattice corresponds to the Newtonian potential associated with the metric, while the finite-size corrections are described by a curved extension of the conformal field theory predictions, including a suitable boundary term. We show that for weak deformations of the Minkowski metric, Casimir forces measured by a local observer at the boundary are universal. We provide numerical evidence for our results on a variety of (1+1)D deformations: Minkowski, Rindler, anti–de Sitter (the so-called rainbow system), and sinusoidal metrics. Moreover, we show that interactions do not preclude our conclusions, exemplifying this with the deformed Heisenberg chain.