Persona:
Monago Maraña, Olga

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Monago Maraña
Nombre de pila
Olga
Nombre

Resultados de la búsqueda

Mostrando 1 - 10 de 19
  • Publicación
    Fluorescence properties of flavonoid compounds. Quantification in paprika samples using spectrofluorimetry coupled to second order chemometric tools
    (Elsevier, 2016-04-01) Durán Merás, Isabel; Galeano Díaz, Teresa; Muñoz de la Peña, Arsenio; Monago Maraña, Olga
    The influence of pH on the fluorescence of flavonoid compounds was investigated and the highest fluorescence emission was obtained in basic medium. Selected conditions to improve this signal were: pH 9.5, 0.14 M Britton Robinson buffer and methanol between 5% and 10%. The excitation–emission fluorescence matrices of a set of 36 samples of Spanish paprika were analyzed by means of parallel factor analysis (PARAFAC). Thus, the profiles of possible fluorescence components (PARAFAC loadings) were obtained. One of these profiles was identified by matching PARAFAC scores with LC analysis on the same samples. Two clusters of samples were obtained when score values were plotted against each other. Spectrofluorimetry coupled to second order multivariate calibration methods, as unfolded-partial least squares with residual bilinearization (U-PLS/RBL) and multidimensional-partial least-squares with residual bilinearization (N-PLS/RBL), was investigated to quantify quercetin and kaempferol in those samples. Good results were obtained for quercetin by this approach.
  • Publicación
    Combination of Liquid Chromatography with Multivariate CurveResolution-Alternating Least-Squares (MCR-ALS) in the Quantitationof Polycyclic Aromatic Hydrocarbons Present in Paprika Samples
    (American Chemical Society, 2016-10-07) Pérez, Rocío L; Escandar, Graciela M.; Muñoz de la Peña, Arsenio; Galeano Díaz, Teresa; Monago Maraña, Olga
    This work presents a strategy for quantitating polycyclic aromatic hydrocarbons (PAHs) in smoked paprikasamples. For this, a liquid chromatographic method withfluorimetric detection (HPLC-FLD) was optimized. To resolve some interference co-eluting with the target analytes, the second-order multivariate curve resolution-alternating least-squares (MCR-ALS) algorithm has been employed combined with this liquid chromatographic method. Among the eight PAHs quantified(fluorene, phenanthrene, anthracene, pyrene, chrysene, benzo[a]anthracene, benzo[b]fluoranthene, and benzo[a]pyrene) byHPLC-FLD, only in the case offluorene, pyrene, and benzo[b]fluoranthene was it necessary to apply the second-order algorithmfor their resolution. Limits of detection and quantitation were between 0.015 and 0.45 mg/kg and between 0.15 and 1.5 mg/kg,respectively. Good recovery results (>80%) for paprika were obtained via the complete extraction procedure, consisting of anextraction from the matrix and the cleanup of the extract by means of silica cartridges. Higher concentrations of chrysene,benzo[a]anthracene, benzo[b]fluoranthene, and benzo[a]pyrene were found in the paprika samples, with respect to the maximalamounts allowed for other spices that are under European Regulation (EU) N°2015/1933
  • Publicación
    Untargeted classification for paprika powder authentication using visible – Near infrared spectroscopy (VIS-NIRS)
    (Elsevier, 2021-03) Eskildsen, Carl Emil; Galeano Díaz, Teresa; Muñoz de la Peña, Arsenio; Wold, Jens Petter; Monago Maraña, Olga
    This paper describes a non-destructive screening method for authentication of paprika belonging to the Spanish Protected Designation of Origin (PDO) “Pimentón de La Vera”. Different multivariate classification models were developed in order to differentiate PDO and non-PDO samples, using visible-near infrared spectra as fingerprint for each paprika sample. Sample treatment was not required. Principal component analysis (PCA) was applied in different spectral ranges: 400–2500, 400–800 and 800–2500 nm. In all spectral ranges, PCA was largely able to differentiate PDO from non-PDO samples. Partial least-squares - discriminant analysis (PLS-DA), PCA-linear discriminant analysis (LDA) and PCA-quadratic discriminant analysis (QDA) were used as classification methods in the different spectral ranges. All methods were able to differentiate PDO from non-PDO samples, with error rates (ER) lower than 0.15. The best models were those obtained with PLS-DA in the NIR range (800–2500 nm), showing ERs lower than 0.07 and error indexes (IERROR) (false positives) lower than 0.05.
  • Publicación
    Four- and five-way excitation-emission luminescence-based data acquisition and modeling for analytical applications. A review
    (Elsevier, 2019-11-20) Alcaraz, Mirta R.; Goicoechea, Héctor C.; Muñoz de la Peña, Arsenio; Monago Maraña, Olga
    The latest advances in both theory and experimental procedures on third-order/four-way and fourth-order/five-way calibration methods are discussed. This report is focused on excitation–emission (fluorescence and phosphorescence) matrices generation, employing different variables as the third data mode (time retention in chromatography, pH gradient, fluorescence/phosphorescence lifetime, kinetics, or other chemical treatments). Fully capitalizing on the second-order advantage, it has been possible to develop appealing analytical applications in spite of the complexity of the data. Extraction of the significant chemical information about the system under study as well as the individual abundance of the contributing constituents after proper higher-order data decomposition has allowed to analytical researchers performing quantitative analysis of complex samples. The experimental works reported up to the present are introduced and discussed in order to illustrate concepts. Throughout this work, the analytical benefits achieved by modeling third- and fourth-order data are exposed, attempting to contribute to the ongoing debate in the chemometric community regarding the existence and the true nature of the third-order advantage.
  • Publicación
    Monitoring of chlorophylls during the maturation stage of plums by multivariate calibration of RGB data from digital images
    (MDPI, 2022-12-22) Domínguez Manzano, Jaime; Muñoz de la Peña, Arsenio; Durán Merás, Isabel; Monago Maraña, Olga
    The methodology developed in this study was based on digital imaging processing of plums harvested in eight different weeks during their ripening process. Mean RGB data, histograms, and matrices of RGB data were used to characterise the ripening stage of the plums, in both qualitative and quantitative approaches, by using classification and quantification chemometric methods. An exploratory analysis of data was performed using principal component analysis (PCA) and parallel factor analysis (PARAFAC) in RGB histograms and matrices data, respectively, showing differences in the colour features since the fourth week of harvesting. In the case of the quantitative approach, high correlation was achieved between the histogram data, using partial least squares (PLS), and total chlorophyll content. In addition, between three-way matrixes and total chlorophyll content, good correlations were obtained applying unfolded-PLS (U-PLS) and N-way-PLS (N-PLS). The most accurate results were obtained on the green channel. Analytical parameters obtained were good, with determination coefficients (R2) higher than 0.91 for all models in the first and second-order multivariate analysis. In addition, relative errors of prediction (REPs) were lower than 12% in all models for the green channel. Therefore, the proposed method was a satisfactory alternative to destructive physiological and biochemical methods in the determination of total chlorophylls in plum samples. In the routine analysis, first-order multivariate calibration with PLS analysis is a good option due to the simplicity of data processing.
  • Publicación
    Determination of Quercetin and Luteolin in Paprika Samples by Voltammetry and Partial Least Squares Calibration
    (Wiley, 2017-09-19) Chamizo González, Francisco; Galeano Díaz, Teresa; Muñoz de la Peña, Arsenio; Monago Maraña, Olga
    Quercetin and luteolin are flavonoids with beneficious properties, which are present in paprika. In this work, both have been determined in paprika by using electrochemistry combined with chemometrics. The electrochemical oxidation mechanisms of both analytes have been studied through sampled direct current (DC) voltammetry, differential pulse voltammetry (DPV) and Square Wave Voltammetry (SWV), making use of a glassy carbon electrode. The final technique selected for the quantification was DPV due to its high repeatability with respect SWV. The chemical variables and the instrumental parameters were optimized and the final conditions employed were ethanol: water (20 : 80), 0.75 mol dm−3 of HCl, and a pulse amplitude of 50 mV. Due to the facts that oxidation potential of both analytes were quite similar, their DPV peaks were overlapped, and also because the analytes interaction during the electrochemical process causes a non-additivity of the signals, they could not be quantified separately by direct measurement of peak intensity. For this reason, a chemometric algorithm was applied (partial least squares (PLS) regression in its modality PLS-2). In the case of validation samples, appropriate sets of calibration and validation were built and good results were obtained. This methodology was applied to real paprika samples and the results were similar to those obtained with a HPLC method previously reported.
  • Publicación
    Quantification of soluble solids and individual sugars in apples by Raman spectroscopy: A feasibility study
    (Elsevier, 2021-06-08) Afseth, Nils Kristian; Knutsen, Svein Halvor; Wubshet, Sileshi Gizachew; Wold, Jens Petter; Monago Maraña, Olga
    This study reports the feasibility of using Raman spectroscopy for quantification of soluble solids and individual sugars in apples. Six different commercial apple varieties were measured by Raman spectroscopy at three different steps: 1) Intact apples with skin, 2) apples without skin and 3) juices obtained from apples. Results indicated that it is possible to measure Raman signals to a depth of 8 mm into the apple with a wide area Raman probe. Multivariate calibration models were established to evaluate how well Raman spectra can be used to estimate the quality parameters SSC (%), total sugars, glucose, fructose and sucrose. Estimation accuracy for SSC was comparable with what is achievable with near-infrared spectroscopy: Root mean square error of cross-validation (RMSECV) = 0.66, 0.46 and 0.72 % and coefficients of determination (R2) = 0.70, 0.85 and 0.63 for intact apples, apples without skin and juices, respectively. Sucrose and glucose were well estimated with RMSECV of 2.8, 1.9, 2.1 mg/mL for glucose and 5.8, 3.9 and 3.7 mg/mL for sucrose, for the three sample cases, respectively. Coefficient of determination was higher than 0.82 for all models. Regression coefficients for all calibration models highlighted identifiable Raman bands that could be related to the target sugars.
  • Publicación
    Acrylamide-fat correlation in californian-style black olives using near-infrared spectroscopy
    (MDPI, 2023-09-06) Montero Fernández, Ismael; Martín Tornero, Elísabet; Martín Vertedor, Daniel; Fernández Fernández, Antonio; Monago Maraña, Olga
    Californian-style is one of the most important black table olive elaborations. During its processing, table olives produce acrylamide, a potential carcinogen compound generated during sterilization. In the present study, total fat and acrylamide content in Californian-style table olives were determined and a regression between them was performed (acrylamide concentration range: below limit of detection—2500 ng g−1 and 8–22% for total fat). Nowadays, there are fast and efficient new techniques, such as Near-Infrared Spectroscopy (NIRS) to measure fat content parameters. In that sense, NIRS was used to perform a fat content quantification model in olives in order to indirectly determine acrylamide content. Calibration models for fat quantification were obtained in defatted olive pastes from a unique variety and for olive pastes from different varieties. In the first case, best results were obtained since only one variety was used (R2 = 0.9694; RMSECV = 1.31%; and REP = 8.4%). However, in the second case, results were still acceptable R2 = 0.678, RMSECV = 2.3%, REP = 17.7% and RMSEV = 2.17%. Regression coefficients showed the most influence variables corresponded with fat. The determination coefficient for the fat and acrylamide correlation was high (r = 0.877), being an efficient approach to find out the contribution of fat degradation to acrylamide synthesis in table olives.
  • Publicación
    Determination of pungency in spicy food by means of excitation-emission fluorescence coupled with second-order chemometric calibration
    (Elsevier, 2018-04) Guzmán Becerra, María; Muñoz de la Peña, Arsenio; Galeano Díaz, Teresa; Monago Maraña, Olga
    Capsaicinoids are a family of compounds responsible for the pungency of spicy foods. In this work, the combination of fluorescence and chemometrics was investigated as a novel quantification method of capsaicinoids in spicy food samples. The excitation–emission matrices (EEMs) of the two major capsaicinoids (capsaicin and dihydrocapsaicin) were identical. Hence, the results were presented as the total content of capsaicinoids. The EEMs of a group of paprika, cayenne and chilli peppers, and of another group of spicy sauces were registered. The decomposition of the EEMs of each group was performed by parallel factor analysis (PARAFAC), obtaining three principal components in each case. After the decomposition, the component corresponding to capsaicinoids was identified by comparison with the profile of a standard mixture of capsaicin and dihydrocapsaicin. In addition, the score values of this component were correlated with the Scoville heat units (SHU) calculated by means of an HPLC–FLD method. Good correlations were obtained in both groups (0.998 and 0.992), confirming the assignation of the component to capsaicinoids. Subsequently, a calibration set was built to carry out the calibration in the spectrofluorimeter, using PARAFAC and U-PLS/RBL as second-order calibration algorithms. Good results for SHU determination were obtained in both groups with both algorithms and when the fluorimetric method was validated by means of liquid chromatographic analysis the relative error of prediction was less than 11.3%.
  • Publicación
    Non-destructive fluorescence spectroscopy combined with second-order calibration as a new strategy for the analysis of the illegal Sudan I dye in paprika powder
    (Elsevier, 2020-05) Eskildsen, Carl Emil; Muñoz de la Peña, Arsenio; Galeano Díaz, Teresa; Wold, Jens Petter; Monago Maraña, Olga
    This paper presents a novel strategy for determination of the illegal dye Sudan I in paprika powder. The method is based on fluorescence spectroscopy combined with second-order calibration, which was employed for the first time for this purpose. The method is non-destructive and requires no sample preparation. It was probed that Sudan I exhibited fluorescence; however, the color of paprika samples affected the signal and it was not possible to quantify this adulterant by means of univariate and first-order calibration. To model the effect of variability of color in samples, a central composite experimental design was performed with varying ASTA (American Spices Trade Association) color values and Sudan I concentrations. Different second-order algorithms were tried for quantification. The best results for calibration and validation were obtained from Unfolded-Partial Least-Squares (U-PLS) and Multi-way Partial Least-Squares (N-PLS). The level of detection ranges were 0.4 – 3 mg/g and 0.5 – 3 mg/g for U-PLS and N-PLS, respectively. This was lower than other methods found in the literature.