Persona: Monago Maraña, Olga
Cargando...
Dirección de correo electrónico
ORCID
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Monago Maraña
Nombre de pila
Olga
Nombre
13 resultados
Resultados de la búsqueda
Mostrando 1 - 10 de 13
Publicación Monitoring of chlorophylls during the maturation stage of plums by multivariate calibration of RGB data from digital images(MDPI, 2022-12-22) Domínguez Manzano, Jaime; Muñoz de la Peña, Arsenio; Durán Merás, Isabel; Monago Maraña, OlgaThe methodology developed in this study was based on digital imaging processing of plums harvested in eight different weeks during their ripening process. Mean RGB data, histograms, and matrices of RGB data were used to characterise the ripening stage of the plums, in both qualitative and quantitative approaches, by using classification and quantification chemometric methods. An exploratory analysis of data was performed using principal component analysis (PCA) and parallel factor analysis (PARAFAC) in RGB histograms and matrices data, respectively, showing differences in the colour features since the fourth week of harvesting. In the case of the quantitative approach, high correlation was achieved between the histogram data, using partial least squares (PLS), and total chlorophyll content. In addition, between three-way matrixes and total chlorophyll content, good correlations were obtained applying unfolded-PLS (U-PLS) and N-way-PLS (N-PLS). The most accurate results were obtained on the green channel. Analytical parameters obtained were good, with determination coefficients (R2) higher than 0.91 for all models in the first and second-order multivariate analysis. In addition, relative errors of prediction (REPs) were lower than 12% in all models for the green channel. Therefore, the proposed method was a satisfactory alternative to destructive physiological and biochemical methods in the determination of total chlorophylls in plum samples. In the routine analysis, first-order multivariate calibration with PLS analysis is a good option due to the simplicity of data processing.Publicación Non-destructive fluorescence spectroscopy combined with second-order calibration as a new strategy for the analysis of the illegal Sudan I dye in paprika powder(Elsevier, 2020-05) Eskildsen, Carl Emil; Muñoz de la Peña, Arsenio; Galeano Díaz, Teresa; Wold, Jens Petter; Monago Maraña, OlgaThis paper presents a novel strategy for determination of the illegal dye Sudan I in paprika powder. The method is based on fluorescence spectroscopy combined with second-order calibration, which was employed for the first time for this purpose. The method is non-destructive and requires no sample preparation. It was probed that Sudan I exhibited fluorescence; however, the color of paprika samples affected the signal and it was not possible to quantify this adulterant by means of univariate and first-order calibration. To model the effect of variability of color in samples, a central composite experimental design was performed with varying ASTA (American Spices Trade Association) color values and Sudan I concentrations. Different second-order algorithms were tried for quantification. The best results for calibration and validation were obtained from Unfolded-Partial Least-Squares (U-PLS) and Multi-way Partial Least-Squares (N-PLS). The level of detection ranges were 0.4 – 3 mg/g and 0.5 – 3 mg/g for U-PLS and N-PLS, respectively. This was lower than other methods found in the literature.Publicación Second-order calibration in combination with fluorescence fibre-optic data modelling as a novel approach for monitoring the maturation stage of plums(Elsevier, 2020-04-15) Domínguez Manzano, Jaime; Muñoz de la Peña, Arsenio; Durán Merás, Isabel; Muñoz de la Peña, Arsenio; Monago Maraña, OlgaIn this work, non-destructive autofluorescence of plums was employed to study the chlorophylls’ concentration evolution along the maturation process. For that, excitation-emission matrices (EEMs), containing full fluorescence information, were collected with a fibre-optic, assembled to a spectrofluorometer. Data analysis was performed with several second-order multi-way algorithms, such as parallel factor analysis (PARAFAC), multi-way partial least-squares (N-PLS), unfolded partial least-squares (U-PLS), and multivariate curve resolution-alternating least-squares (MCR-ALS). Firstly, the EEMs of each plum, collected each week along the maturation process, were processed with PARAFAC. Two components were used to model the data and the excitation and emission loadings were obtained. Score values for the first PARAFAC component showed a clear evolution with time, increasing during the first five weeks, and decreasing for the last weeks. Also, the chlorophyll concentrations obtained by HPLC analysis, in the skin and the whole fruit, were compared with those obtained with different algorithms mentioned before. Best results were obtained in the case of skin for all algorithms. Similar correlation coefficients (r) were obtained in all cases (0.899 (PARAFAC); 0.940 (U-PLS); 0.936 (N-PLS) and 0.958 (MCR-ALS)). When the elliptical joint confidence region (EJCR), for the slope and intercept, were calculated, the theoretically expected values of 1 and 0, for the slope and intercept, respectively, were included in all ellipses. However, it was observed that for the skin data and U-PLS and N-PLS algorithms, the EJCR confidence region was smaller than in the other cases.Publicación Cost-effective fully 3D-printed on-drop electrochemical sensor based on carbon black/polylactic acid: a comparative study with screen-printed sensors in food analysis(Springer, 2024) Monago Maraña, Olga; Aouladtayib-Boulakjar, Nadia; Zapardiel Palenzuela, Antonio; García Domínguez, Amabel; Ayllón Pérez, Jorge; Rodríguez Prieto, Álvaro; Claver Gil, Juan; Camacho López, Ana María; González Crevillén, Agustín3D-printing technology allows scientist to fabricate easily electrochemical sensors. Until now, these sensors were designed employing a large amount of material, which increases the cost and decreases manufacturing throughput. In this work, a low-cost 3D-printed on-drop electrochemical sensor (3D-PES) was fully manufactured by fused filament fabrication, minimizing the number of printing layers. Carbon black/polylactic acid filament was employed, and the design and several printing parameters were optimized to yield the maximum electroanalytical performance using the minimal amount of material. Print speed and extrusion width showed a critical influence on the electroanalytical performance of 3D-PES. Under optimized conditions, the fabrication procedure offered excellent reproducibility (RSD 1.3% in working electrode diameter), speed (< 3 min/unit), and costs (< 0.01 $ in material cost). The 3D-PES was successfully applied to the determination of phloridzin in apple juice. The analytical performance of 3D-PES was compared with an equivalent commercial on-drop screen-printed electrode, yielding similar precision and accuracy but lower sensitivity. However, 3D-PES provides interesting features such as recyclability, biodegradability, low-cost, and the possibility of being manufactured near the point of need, some of which meets several demands of Green Chemistry. This cost-effective printing approach is a green and promising alternative for manufacturing disposable and portable electroanalytical devices, opening new possibilities not only in on-site food analysis but also in point-of-care testing.Publicación Acrylamide-fat correlation in californian-style black olives using near-infrared spectroscopy(MDPI, 2023-09-06) Montero Fernández, Ismael; Martín Tornero, Elísabet; Martín Vertedor, Daniel; Fernández Fernández, Antonio; Monago Maraña, OlgaCalifornian-style is one of the most important black table olive elaborations. During its processing, table olives produce acrylamide, a potential carcinogen compound generated during sterilization. In the present study, total fat and acrylamide content in Californian-style table olives were determined and a regression between them was performed (acrylamide concentration range: below limit of detection—2500 ng g−1 and 8–22% for total fat). Nowadays, there are fast and efficient new techniques, such as Near-Infrared Spectroscopy (NIRS) to measure fat content parameters. In that sense, NIRS was used to perform a fat content quantification model in olives in order to indirectly determine acrylamide content. Calibration models for fat quantification were obtained in defatted olive pastes from a unique variety and for olive pastes from different varieties. In the first case, best results were obtained since only one variety was used (R2 = 0.9694; RMSECV = 1.31%; and REP = 8.4%). However, in the second case, results were still acceptable R2 = 0.678, RMSECV = 2.3%, REP = 17.7% and RMSEV = 2.17%. Regression coefficients showed the most influence variables corresponded with fat. The determination coefficient for the fat and acrylamide correlation was high (r = 0.877), being an efficient approach to find out the contribution of fat degradation to acrylamide synthesis in table olives.Publicación Quantification of soluble solids and individual sugars in apples by Raman spectroscopy: A feasibility study(Elsevier, 2021-06-08) Afseth, Nils Kristian; Knutsen, Svein Halvor; Wubshet, Sileshi Gizachew; Wold, Jens Petter; Monago Maraña, OlgaThis study reports the feasibility of using Raman spectroscopy for quantification of soluble solids and individual sugars in apples. Six different commercial apple varieties were measured by Raman spectroscopy at three different steps: 1) Intact apples with skin, 2) apples without skin and 3) juices obtained from apples. Results indicated that it is possible to measure Raman signals to a depth of 8 mm into the apple with a wide area Raman probe. Multivariate calibration models were established to evaluate how well Raman spectra can be used to estimate the quality parameters SSC (%), total sugars, glucose, fructose and sucrose. Estimation accuracy for SSC was comparable with what is achievable with near-infrared spectroscopy: Root mean square error of cross-validation (RMSECV) = 0.66, 0.46 and 0.72 % and coefficients of determination (R2) = 0.70, 0.85 and 0.63 for intact apples, apples without skin and juices, respectively. Sucrose and glucose were well estimated with RMSECV of 2.8, 1.9, 2.1 mg/mL for glucose and 5.8, 3.9 and 3.7 mg/mL for sucrose, for the three sample cases, respectively. Coefficient of determination was higher than 0.82 for all models. Regression coefficients for all calibration models highlighted identifiable Raman bands that could be related to the target sugars.Publicación Evaluation of hydrophilic and lipophilic antioxidant capacity in Spanish tomato paste: usefulness of front-face total fluroescence signal combined with PARAFAC(Springer, 2021-12-01) Pardo Botello, Rosario; Chamizo Calero, Fátima; Rodríguez Corchado, Raquel; Torre Carreras, Rosa de la; Galeano Díaz, Teresa; Monago Maraña, OlgaThe hydrophilic and lipophilic antioxidant activities due to the main bioactive components present in Spanish tomato paste samples were studied, using standardized and fluorescent methods. After extraction, phenolic antioxidants (Folin-Ciocalteu method) and total antioxidant activity (TEAC assay) were evaluated, examining differences between hydrophilic and lipophilic extracts corresponding to different samples. Total fluorescence spectra of extracts (excitation-emission matrices, EEMs) were recorded in the front-face mode at two different ranges: 210-300 nm/ 310-390 nm, and 295-350 nm/380-480 nm, for excitation and emission, respectively, in the hydrophilic extracts. In the lipophilic extracts, the first range was 230-283 nm/290-340 nm, while the second range was 315-383 nm/390-500 nm for excitation and emission, respectively. EEMs from a set of 22 samples were analyzed by the second-order multivariate technique Parallel Factor Analysis (PARAFAC). Tentative assignation of the different components to the various fluorophores of tomato was tried, based on literature. Correlation between the antioxidant activity and score values retrieved for different components in PARAFAC model was obtained. The possibility of using EEMs-PARAFAC to evaluate antioxidant activity of hydrophilic and lipophilic compounds in these samples was examined, obtaining good results in accordance with the Folin-Ciocalteu and TEAC assays.Publicación Untargeted authentication of fruit juices based on electrochemical fingerprints combined with chemometrics. Adulteration of orange juice as case of study(ELSEVIER, 2024) Monago Maraña, Olga; Zapardiel Palenzuela, Antonio; González Crevillén, AgustínThis work presents a novel strategy for authentication of fruit juices. The methodology is based on an electrochemical method combined with chemometrics. In addition, the case of orange juice adulteration with grapefruit juices was studied using this methodology. The electrochemical fingerprint of different juices showed the influence from different polyphenols according to the type of fruit. First, Principal Component Analysis (PCA) was able to differentiate clusters of different juices, being the higher group distance within apple, orange, and grape juices samples. On the other hand, partial least-squares – discriminant analysis (PLS-DA) and PCA-linear discriminant analysis (LDA) were used as classification methods, obtaining better results for orange and apple models. Furthermore, good results were obtained for the authentication of orange juices, compared to other juices, with an error rate of 0.04 for cross-validation. In the case of adulteration of orange juice was detected using PLS-DA at an adulteration level as low as 1%. Regression vectors for all models highlighted identifiable potential values that could be related to the main polyphenols in each type of fruit. This electrochemical method is rapid, low-cost, and compatible with on-site analysis compared to other laborious analysis described in the literature.Publicación Raman spectroscopy as a tool for characterisation of quality parameters in Norwegian grown apples during ripening(ELSEVIER, 2024) Monago Maraña, Olga; Wold, Jens Petter; Remberg, Siv Fagertun; Sanden, Karen Wahlstrøm; Afseth, Nils KristianThis study shows for the first time the feasibility of Raman spectroscopy as a non-destructive method to follow the ripening process of apple fruits. Two different varieties of apples were studied: ‘Aroma’ and ‘Elstar’. By visual inspection, Raman spectra showed that the starch content was higher in ‘Elstar’ apples compared to ‘Aroma’. The degradation of starch over time could be detected in the Raman spectra, indicating that the method can be used to monitor the ripening process. The ripeness markers starch index, soluble solids content (SSC), and the sugars glucose, fructose and sucrose were determined with traditional destructive methods. Cross validated calibration models based on Raman spectroscopy were obtained for all quality parameters, and test set validation offered good results, with R2 in the range 0.4–0.86 for ‘Aroma’ and 0.4–0.95 for ‘Elstar’, respectively. The regression coefficients showed that the calibrations relied on Raman bands associated with starch and different sugars. The results suggest that Raman spectroscopy in the future could be used to determine the optimal time of harvesting and to sort apples into different degrees of ripeness.Publicación Characterization of the metabolic profile of olive tissues (roots, stems and leaves): relationship with cultivars' resistance/susceptibility to the soil fungus Verticillium dahliae.(MDPI, 2023-12-15) Serrano García, Irene; Olmo García, Lucía; Muñoz Cabello de Alba, Iván; León, Lorenzo; Rosa Navarro, Raúl de la; Serrano, Alicia; Gómez Caravaca, Ana María; Carrasco Pancorbo, Alegría; Monago Maraña, OlgaVerticillium wilt of olive (VWO) is one of the most widespread and devastating olive diseases in the world. Harnessing host resistance to the causative agent is considered one of the most important measures within an integrated control strategy of the disease. Aiming to understand the mechanisms underlying olive resistance to VWO, the metabolic profiles of olive leaves, stems and roots from 10 different cultivars with varying levels of susceptibility to this disease were investigated by liquid chromatography coupled to mass spectrometry (LC-MS). The distribution of 56 metabolites among the three olive tissues was quantitatively assessed and the possible relationship between the tissues’ metabolic profiles and resistance to VWO was evaluated by applying unsupervised and supervised multivariate analysis. Principal component analysis (PCA) was used to explore the data, and separate clustering of highly resistant and extremely susceptible cultivars was observed. Moreover, partial least squares discriminant analysis (PLS-DA) models were built to differentiate samples of highly resistant, intermediate susceptible/resistant, and extremely susceptible cultivars. Root models showed the lowest classification capability, but metabolites from leaf and stem were able to satisfactorily discriminate samples according to the level of susceptibility. Some typical compositional patterns of highly resistant and extremely susceptible cultivars were described, and some potential resistance/susceptibility metabolic markers were pointed out.