Persona:
Monago Maraña, Olga

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Monago Maraña
Nombre de pila
Olga
Nombre

Resultados de la búsqueda

Mostrando 1 - 10 de 11
  • Publicación
    Fluorescence properties of flavonoid compounds. Quantification in paprika samples using spectrofluorimetry coupled to second order chemometric tools
    (Elsevier, 2016-04-01) Durán Merás, Isabel; Galeano Díaz, Teresa; Muñoz de la Peña, Arsenio; Monago Maraña, Olga
    The influence of pH on the fluorescence of flavonoid compounds was investigated and the highest fluorescence emission was obtained in basic medium. Selected conditions to improve this signal were: pH 9.5, 0.14 M Britton Robinson buffer and methanol between 5% and 10%. The excitation–emission fluorescence matrices of a set of 36 samples of Spanish paprika were analyzed by means of parallel factor analysis (PARAFAC). Thus, the profiles of possible fluorescence components (PARAFAC loadings) were obtained. One of these profiles was identified by matching PARAFAC scores with LC analysis on the same samples. Two clusters of samples were obtained when score values were plotted against each other. Spectrofluorimetry coupled to second order multivariate calibration methods, as unfolded-partial least squares with residual bilinearization (U-PLS/RBL) and multidimensional-partial least-squares with residual bilinearization (N-PLS/RBL), was investigated to quantify quercetin and kaempferol in those samples. Good results were obtained for quercetin by this approach.
  • Publicación
    Combination of Liquid Chromatography with Multivariate CurveResolution-Alternating Least-Squares (MCR-ALS) in the Quantitationof Polycyclic Aromatic Hydrocarbons Present in Paprika Samples
    (American Chemical Society, 2016-10-07) Pérez, Rocío L; Escandar, Graciela M.; Muñoz de la Peña, Arsenio; Galeano Díaz, Teresa; Monago Maraña, Olga
    This work presents a strategy for quantitating polycyclic aromatic hydrocarbons (PAHs) in smoked paprikasamples. For this, a liquid chromatographic method withfluorimetric detection (HPLC-FLD) was optimized. To resolve some interference co-eluting with the target analytes, the second-order multivariate curve resolution-alternating least-squares (MCR-ALS) algorithm has been employed combined with this liquid chromatographic method. Among the eight PAHs quantified(fluorene, phenanthrene, anthracene, pyrene, chrysene, benzo[a]anthracene, benzo[b]fluoranthene, and benzo[a]pyrene) byHPLC-FLD, only in the case offluorene, pyrene, and benzo[b]fluoranthene was it necessary to apply the second-order algorithmfor their resolution. Limits of detection and quantitation were between 0.015 and 0.45 mg/kg and between 0.15 and 1.5 mg/kg,respectively. Good recovery results (>80%) for paprika were obtained via the complete extraction procedure, consisting of anextraction from the matrix and the cleanup of the extract by means of silica cartridges. Higher concentrations of chrysene,benzo[a]anthracene, benzo[b]fluoranthene, and benzo[a]pyrene were found in the paprika samples, with respect to the maximalamounts allowed for other spices that are under European Regulation (EU) N°2015/1933
  • Publicación
    Untargeted classification for paprika powder authentication using visible – Near infrared spectroscopy (VIS-NIRS)
    (Elsevier, 2021-03) Eskildsen, Carl Emil; Galeano Díaz, Teresa; Muñoz de la Peña, Arsenio; Wold, Jens Petter; Monago Maraña, Olga
    This paper describes a non-destructive screening method for authentication of paprika belonging to the Spanish Protected Designation of Origin (PDO) “Pimentón de La Vera”. Different multivariate classification models were developed in order to differentiate PDO and non-PDO samples, using visible-near infrared spectra as fingerprint for each paprika sample. Sample treatment was not required. Principal component analysis (PCA) was applied in different spectral ranges: 400–2500, 400–800 and 800–2500 nm. In all spectral ranges, PCA was largely able to differentiate PDO from non-PDO samples. Partial least-squares - discriminant analysis (PLS-DA), PCA-linear discriminant analysis (LDA) and PCA-quadratic discriminant analysis (QDA) were used as classification methods in the different spectral ranges. All methods were able to differentiate PDO from non-PDO samples, with error rates (ER) lower than 0.15. The best models were those obtained with PLS-DA in the NIR range (800–2500 nm), showing ERs lower than 0.07 and error indexes (IERROR) (false positives) lower than 0.05.
  • Publicación
    Determination of Quercetin and Luteolin in Paprika Samples by Voltammetry and Partial Least Squares Calibration
    (Wiley, 2017-09-19) Chamizo González, Francisco; Galeano Díaz, Teresa; Muñoz de la Peña, Arsenio; Monago Maraña, Olga
    Quercetin and luteolin are flavonoids with beneficious properties, which are present in paprika. In this work, both have been determined in paprika by using electrochemistry combined with chemometrics. The electrochemical oxidation mechanisms of both analytes have been studied through sampled direct current (DC) voltammetry, differential pulse voltammetry (DPV) and Square Wave Voltammetry (SWV), making use of a glassy carbon electrode. The final technique selected for the quantification was DPV due to its high repeatability with respect SWV. The chemical variables and the instrumental parameters were optimized and the final conditions employed were ethanol: water (20 : 80), 0.75 mol dm−3 of HCl, and a pulse amplitude of 50 mV. Due to the facts that oxidation potential of both analytes were quite similar, their DPV peaks were overlapped, and also because the analytes interaction during the electrochemical process causes a non-additivity of the signals, they could not be quantified separately by direct measurement of peak intensity. For this reason, a chemometric algorithm was applied (partial least squares (PLS) regression in its modality PLS-2). In the case of validation samples, appropriate sets of calibration and validation were built and good results were obtained. This methodology was applied to real paprika samples and the results were similar to those obtained with a HPLC method previously reported.
  • Publicación
    Determination of pungency in spicy food by means of excitation-emission fluorescence coupled with second-order chemometric calibration
    (Elsevier, 2018-04) Guzmán Becerra, María; Muñoz de la Peña, Arsenio; Galeano Díaz, Teresa; Monago Maraña, Olga
    Capsaicinoids are a family of compounds responsible for the pungency of spicy foods. In this work, the combination of fluorescence and chemometrics was investigated as a novel quantification method of capsaicinoids in spicy food samples. The excitation–emission matrices (EEMs) of the two major capsaicinoids (capsaicin and dihydrocapsaicin) were identical. Hence, the results were presented as the total content of capsaicinoids. The EEMs of a group of paprika, cayenne and chilli peppers, and of another group of spicy sauces were registered. The decomposition of the EEMs of each group was performed by parallel factor analysis (PARAFAC), obtaining three principal components in each case. After the decomposition, the component corresponding to capsaicinoids was identified by comparison with the profile of a standard mixture of capsaicin and dihydrocapsaicin. In addition, the score values of this component were correlated with the Scoville heat units (SHU) calculated by means of an HPLC–FLD method. Good correlations were obtained in both groups (0.998 and 0.992), confirming the assignation of the component to capsaicinoids. Subsequently, a calibration set was built to carry out the calibration in the spectrofluorimeter, using PARAFAC and U-PLS/RBL as second-order calibration algorithms. Good results for SHU determination were obtained in both groups with both algorithms and when the fluorimetric method was validated by means of liquid chromatographic analysis the relative error of prediction was less than 11.3%.
  • Publicación
    Non-destructive fluorescence spectroscopy combined with second-order calibration as a new strategy for the analysis of the illegal Sudan I dye in paprika powder
    (Elsevier, 2020-05) Eskildsen, Carl Emil; Muñoz de la Peña, Arsenio; Galeano Díaz, Teresa; Wold, Jens Petter; Monago Maraña, Olga
    This paper presents a novel strategy for determination of the illegal dye Sudan I in paprika powder. The method is based on fluorescence spectroscopy combined with second-order calibration, which was employed for the first time for this purpose. The method is non-destructive and requires no sample preparation. It was probed that Sudan I exhibited fluorescence; however, the color of paprika samples affected the signal and it was not possible to quantify this adulterant by means of univariate and first-order calibration. To model the effect of variability of color in samples, a central composite experimental design was performed with varying ASTA (American Spices Trade Association) color values and Sudan I concentrations. Different second-order algorithms were tried for quantification. The best results for calibration and validation were obtained from Unfolded-Partial Least-Squares (U-PLS) and Multi-way Partial Least-Squares (N-PLS). The level of detection ranges were 0.4 – 3 mg/g and 0.5 – 3 mg/g for U-PLS and N-PLS, respectively. This was lower than other methods found in the literature.
  • Publicación
    Non-destructive Raman spectroscopy as a tool for measuring ASTA color values and Sudan I content in paprika powder
    (Elsevier, 2019-02-15) Eskildsen, Carl Emil; Afseth, Nils Kristian; Galeano Díaz, Teresa; Muñoz de la Peña, Arsenio; Wold, Jens Petter; Monago Maraña, Olga
    The aim of this study was developing a non-destructive method for the determination of color in paprika powder as well as for detecting possible adulteration with Sudan I. Non-destructive Raman spectroscopy was applied directly to paprika powder employing a laser excitation of 785 nm for the first time. The fluorescence background was estimated, by fitting a polynomial to each spectrum, and then subtracted. After preprocessing the spectra, some peaks were clearly identified as characteristic from pigments present in paprika. The preprocessed Raman spectra were correlated with the ASTA color values of paprika by partial least squares regression (PLSR). Twenty-five paprika samples were adulterated with Sudan I at different levels and the PLSR model was also obtained. The coefficients of determination (R2) were 0.945 and 0.982 for ASTA and Sudan I concentration, respectively, and the root mean square errors of prediction (RMSEP) were 8.8 ASTA values and 0.91 mg/g, respectively. Finally, different approaches were applied to discriminate between adulterated and non-adulterated samples. Best results were obtained for partial least squares – discriminant analysis (PLS-DA), allowing a good discrimination when the adulteration with Sudan I was higher than 0.5%.
  • Publicación
    Characterization of Spanish Paprika by Multivariate Analysis of Absorption and Fluorescence Spectra
    (Taylor and Francis Group, 2016-04-21) Bartolomé García, Teresa de Jesús; Galeano Díaz, Teresa; Kostrzewa Rutkowska, Z.; Monago Maraña, Olga
    Spanish paprika was clustered on the basis of the Spanish Protected Designation of Origin “Pimentón de La Vera” by molecular absorbance and fluorescence with principal component analysis and parallel factor analysis. Rapid extraction of carotenoids, capsaicinoids, and tocopherols was optimized; the best conditions included ethanol as the extractant, an extraction time of 10 min in an ultrasonic bath, and a sample size of 0.1 g. The procedure provided good precision with a relative standard deviation of 1.2% for four samples. Molecular absorption spectra were obtained from 250 to 600 nm and fluorescence excitation and emission spectra were collected from 200 to 295 nm and 300 to 400 nm, respectively. Forty-eight “Pimentón de La Vera” paprika samples and 19 samples from other origins were characterized. A principal component analysis model was constructed from the absorption spectra and clustering was obtained based on the origin. Parallel factor analysis was performed on the fluorescence data and better characterization of the origin was obtained.
  • Publicación
    Evaluation of hydrophilic and lipophilic antioxidant capacity in Spanish tomato paste: usefulness of front-face total fluroescence signal combined with PARAFAC
    (Springer, 2021-12-01) Pardo Botello, Rosario; Chamizo Calero, Fátima; Rodríguez Corchado, Raquel; Torre Carreras, Rosa de la; Galeano Díaz, Teresa; Monago Maraña, Olga
    The hydrophilic and lipophilic antioxidant activities due to the main bioactive components present in Spanish tomato paste samples were studied, using standardized and fluorescent methods. After extraction, phenolic antioxidants (Folin-Ciocalteu method) and total antioxidant activity (TEAC assay) were evaluated, examining differences between hydrophilic and lipophilic extracts corresponding to different samples. Total fluorescence spectra of extracts (excitation-emission matrices, EEMs) were recorded in the front-face mode at two different ranges: 210-300 nm/ 310-390 nm, and 295-350 nm/380-480 nm, for excitation and emission, respectively, in the hydrophilic extracts. In the lipophilic extracts, the first range was 230-283 nm/290-340 nm, while the second range was 315-383 nm/390-500 nm for excitation and emission, respectively. EEMs from a set of 22 samples were analyzed by the second-order multivariate technique Parallel Factor Analysis (PARAFAC). Tentative assignation of the different components to the various fluorophores of tomato was tried, based on literature. Correlation between the antioxidant activity and score values retrieved for different components in PARAFAC model was obtained. The possibility of using EEMs-PARAFAC to evaluate antioxidant activity of hydrophilic and lipophilic compounds in these samples was examined, obtaining good results in accordance with the Folin-Ciocalteu and TEAC assays.
  • Publicación
    Analytical technique and chemometrics approaches in authenticating and identifying adulteration of paprika powder using fingerprints: a review.
    (Elsevier, 2022) Durán Merás, Isabel; Muñoz de la Peña, Arsenio; Galeano Díaz, Teresa; Monago Maraña, Olga
    Paprika powder authentication has gained interest in recent decades along with increases in its consumption. There are different Protected Designation of Origins (PDOs) around the world, some of them are from Spain, and it is important to assure the quality parameters that they offer and to provide a guaranty about their quality and authentication. This review covers the latest advances concerning the targeted and untargeted methodologies. These methodologies have been developed to ensure paprika powder authenticity, corroborating that it belongs or not to a certain PDO and that it complies with the regulations and legal standards for its consumption, as well as detection of possible adulterations, mainly with Sudan dyes, which are illegal colorants. Differences between spectroscopic and non-spectroscopic methods have been emphasized. As observed from the literature, paprika powder has not been extensively studied, but the number of papers has been increasing in recent years.