Persona:
Mendieta Aragón, Adrián

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Mendieta Aragón
Nombre de pila
Adrián
Nombre

Resultados de la búsqueda

Mostrando 1 - 3 de 3
  • Publicación
    Twitter's capacity to forecast tourism demand: the case of way of Saint James
    (Emerald Publishing, 2024-04-25) Mendieta Aragón, Adrián; Navío Marco, Julio; Garín Muñoz, María Teresa
    Purpose – Radical changes in consumer habits induced by the coronavirus disease (COVID-19) pandemic suggest that the usual demand forecasting techniques based on historical series are questionable. This is particularly true for hospitality demand, which has been dramatically affected by the pandemic. Accordingly, we investigate the suitability of tourists’ activity on Twitter as a predictor of hospitality demand in the Way of Saint James – an important pilgrimage tourism destination. Design/methodology/approach – This study compares the predictive performance of the seasonal autoregressive integrated moving average (SARIMA) time-series model with that of the SARIMA with an exogenous variables (SARIMAX) model to forecast hotel tourism demand. For this, 110,456 tweets posted on Twitter between January 2018 and September 2022 are used as exogenous variables. Findings – The results confirm that the predictions of traditional time-series models for tourist demand can be significantly improved by including tourist activity on Twitter. Twitter data could be an effective tool for improving the forecasting accuracy of tourism demand in real-time, which has relevant implications for tourism management. This study also provides a better understanding of tourists’ digital footprints in pilgrimage tourism. Originality/value – This study contributes to the scarce literature on the digitalisation of pilgrimage tourism and forecasting hotel demand using a new methodological framework based on Twitter user-generated content. This can enable hospitality industry practitioners to convert social media data into relevant information for hospitality management.
  • Publicación
    Foreign Tourism in Andalusia: A Dynamic Panel Data Analysis
    (Taichung: Asia University, Taiwan, 2020-07) Mendieta Aragón, Adrián; Garín Muñoz, María Teresa
    This paper studies the main determinants of the inbound international tourism in Andalusia and quantify its incidence. Based on the classical theoretical framework for tourism demand, we incorporate dynamics into the model by adding the lagged dependent variable as an explanatory variable, along with the per capita income of the tourist's country of origin, the relative prices between the origin and destination countries and the cost of travel. The empirical model is applied to a panel data set consisting of 21 countries of origin of the tourists for the period 2008–2018. Data were collected from the Hotel Occupancy Survey (HOS), published by the National Statistics Institute of Spain (INE). The results have been obtained using the GMM-DIFF estimator of Arellano and Bond. The parameters estimated reflect a high level of consumer loyalty and the importance of the word-of-mouth effect. Moreover, the income elasticity indicates that the demand for tourism in Andalusia may be considered as a luxury good. Prices have a negative relationship with tourism demand. The cost of travel, which has a negative effect, is statistically significant to explain the number of tourists' arrivals and, however, it is not significant for the overnight stays model.
  • Publicación
    Consumer behaviour in e-Tourism: Exploring new applications of machine learning in tourism studies
    (Universidad de Alicante, 2023-07-17) Mendieta Aragón, Adrián; Garín Muñoz, María Teresa
    Los mercados digitales han alterado la forma en que interactúan los agentes económicos y han cambiado el comportamiento de los turistas. Además, la pandemia de COVID-19 ha demostrado que es necesario monitorear la evolución del comportamiento del consumidor digital y los factores que influyen en él, ya que son elementos dinámicos que evolucionan en el tiempo. Este artículo analiza las desigualdades digitales y valida los principales factores que influyen en los turistas para reservar servicios turísticos en línea. Esta investigación utiliza un conjunto de microdatos con 69.752 y 23.779 observaciones para analizar el modo de reserva de los servicios de alojamiento y transporte, respectivamente, obtenidos de la Encuesta de Turismo de Residentes del Instituto Nacional de Estadística durante el periodo 2016-2021. El artículo confirma variaciones en el perfil del consumidor online y en las características del viaje. Uno de los hallazgos más relevantes es la reducción de la brecha generacional en la contratación online de servicios turísticos. Sin embargo, subsisten desigualdades digitales, como las desigualdades regionales y otras basadas en el nivel de estudios y los ingresos de los turistas. También se destaca que diferentes tipos de viajes, dependiendo del destino, el tipo de alojamiento o transporte, tienen una propensión diferente a reservarse a través de canales de compra digitales. La accesibilidad a las fuentes de big data y los avances recientes en los modelos de aprendizaje automático también han hecho evolucionar las metodologías para analizar el comportamiento del consumidor digital y deben incorporarse a los estudios de turismo. Este estudio compara el rendimiento predictivo de diferentes metodologías en el contexto del turismo electrónico. En particular, evaluamos la potencial capacidad predictiva que podría obtenerse usando técnicas de aprendizaje automático para explicar el comportamiento del consumidor en e-Tourism y lo usamos como punto de referencia para compararlo con los resultados obtenidos usando métodos estadísticos tradicionales. Las métricas de evaluación predictivas seleccionadas muestran que el modelo estadístico de regresión logística mejora la capacidad predictiva de la red neuronal Multilayer Perceptron y presenta valores muy cercanos la máxima capacidad predictiva alcanzada por el algoritmo Random Forest.