Persona:
Rodríguez Prieto, Álvaro

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0002-0712-7472
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Rodríguez Prieto
Nombre de pila
Álvaro
Nombre

Resultados de la búsqueda

Mostrando 1 - 2 de 2
  • Publicación
    Analytical and numerical study for selecting polymeric matrix composites intended to nuclear applications
    (SAGE, 2019-12) Merayo, David; Rodríguez Prieto, Álvaro; Camacho López, Ana María
    This study describes a methodological proposal to select composite materials which are suitable to be employed to manufacture pipes that can properly withstand environments subjected to gamma and neutronic radiation. The methodology is used to select, among many others, the optimal composite material whose properties are used afterwards to simulate several pipe sections by finite element analysis, comparing the results with a well-known nuclear-grade steel, WWER 15Kh2MFAA. The most suitable composite material according to the defined criteria is composed of a phenolic resin matrix reinforced with long boron fibres and exhibit great properties to be used in a nuclear reactor environment: good radiation resistance and mechanical properties with a very low density at low cost. It can be concluded that, in some cases, composite material pipes can be a better option than steel ones. Extending the method to be employed in other industries or with other components could be seen as future works.
  • Publicación
    An Experimental and Numerical Analysis of the Compression of Bimetallic Cylinders
    (MDPI, 2019-12-07) Herrero, José Manuel; Aragón, Ana María; Lorenzo Martín, Cinta; Yanguas Gil, Ángel; Martins, Paulo A. F.; Camacho López, Ana María; Rodríguez Prieto, Álvaro; Bernal Guerrero, Claudio
    This paper investigates the upsetting of bimetallic cylinders with an aluminum alloy center and a brass ring. The influence of the center-ring shape factor and type of assembly fit (interference and clearance), and the effect of friction on the compression force and ductile damage are comprehensively analyzed by means of a combined numerical-experimental approach. Results showed that the higher the shape factor, the lower the forces required, whereas the effect of friction is especially important for cylinders with the lowest shape factors. The type of assembly fit does not influence the compression force. The accumulated ductile damage in the compression of bimetallic cylinders is higher than in single-material cylinders, and the higher the shape factor, the lower the damage for the same amount of stroke. The highest values of damaged were found to occur at the middle plane, and typically in the ring. Results also showed that an interference fit was more favorable for preventing fracture of the ring than a clearance fit. Microstructural analysis by scanning electron microscopy revealed a good agreement with the finite element predicted distribution of ductile damage.