Persona:
Rodríguez Prieto, Álvaro

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0002-0712-7472
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Rodríguez Prieto
Nombre de pila
Álvaro
Nombre

Resultados de la búsqueda

Mostrando 1 - 2 de 2
  • Publicación
    Analysis of Favourable Process Conditions for the 2 Manufacturing of Thin-Wall Pieces of Mild Steel 3 Obtained by Wire and Arc Additive Manufacturing 4 (WAAM)
    (2018) Prado Cerqueira, José Luis; Diéguez, José Luis; Aragón, Ana María; Lorenzo Martín, Cinta; Yanguas Gil, Ángel; Rodríguez Prieto, Álvaro
    One of the challenges in additive manufacturing (AM) of metallic materials is to obtain workpieces free of defects with excellent physical, mechanical, and metallurgical properties. In wire and arc additive manufacturing (WAAM) the influences of process conditions on thermal history, microstructure and resultant mechanical and surface properties of parts must be analyzed. In this work, 3D metallic parts of mild steel wire (American Welding Society-AWS ER70S-6) are built with a WAAM process by depositing layers of material on a substrate of a S235 JR steel sheet of 3 mm thickness under different process conditions, using as welding process the gas metal arc welding (GMAW) with cold metal transfer (CMT) technology, combined with a positioning system such as a computer numerical controlled (CNC) milling machine. Considering the hardness profiles, the estimated ultimate tensile strengths (UTS) derived from the hardness measurements and the microstructure findings, it can be concluded that the most favorable process conditions are the ones provided by CMT, with homogeneous hardness profiles, good mechanical strengths in accordance to conditions defined by standard, and without formation of a decohesionated external layer; CMT Continuous is the optimal option as the mechanical properties are better than single CMT.
  • Publicación
    An Experimental and Numerical Analysis of the Compression of Bimetallic Cylinders
    (MDPI, 2019-12-07) Herrero, José Manuel; Aragón, Ana María; Lorenzo Martín, Cinta; Yanguas Gil, Ángel; Martins, Paulo A. F.; Camacho López, Ana María; Rodríguez Prieto, Álvaro; Bernal Guerrero, Claudio
    This paper investigates the upsetting of bimetallic cylinders with an aluminum alloy center and a brass ring. The influence of the center-ring shape factor and type of assembly fit (interference and clearance), and the effect of friction on the compression force and ductile damage are comprehensively analyzed by means of a combined numerical-experimental approach. Results showed that the higher the shape factor, the lower the forces required, whereas the effect of friction is especially important for cylinders with the lowest shape factors. The type of assembly fit does not influence the compression force. The accumulated ductile damage in the compression of bimetallic cylinders is higher than in single-material cylinders, and the higher the shape factor, the lower the damage for the same amount of stroke. The highest values of damaged were found to occur at the middle plane, and typically in the ring. Results also showed that an interference fit was more favorable for preventing fracture of the ring than a clearance fit. Microstructural analysis by scanning electron microscopy revealed a good agreement with the finite element predicted distribution of ductile damage.