Persona:
Carrillo Urbano, Beatriz

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0002-7393-3675
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Carrillo Urbano
Nombre de pila
Beatriz
Nombre

Resultados de la búsqueda

Mostrando 1 - 2 de 2
  • Publicación
    Physiological and brain alterations produced by high-fat diet in male and female rats can be modulated by increased levels of estradiol during critical periods of development
    (Taylor and Francis Online, 2017-07-11) Carrillo Urbano, Beatriz; Collado Guirao, Paloma; Díaz, Francisca; Chowen, Julie A.; Pérez Izquierdo, María Ángeles; Pinos Sánchez, María Elena
    Background: Overnutrition due to a high-fat diet (HFD) can increase the vulnerability of the metabolic system to maladjustments. Estradiol has an inhibitory role on food intake and this hormone has demonstrated to be a crucial organizer during brain development. Objective: Our aim was to determine whether increased levels of estradiol in the early postnatal period modulate the alterations in metabolism and brain metabolic circuits produced by overnutrition. Methods: Twenty-four male and 24 female Wistar rats were submitted to a HFD (34.9% fat) or a control diet (5% fat) from gestational day 6. From postnatal (P) 6 to P13, both control and HFD groups were administered a s.c. injection of vehicle or estradiol benzoate (0.4 mg/kg), resulting in eight experimental groups (n = 6 in each group). Body weight, food intake and subcutaneous, visceral, and brown fat pads were measured. Agouti-related peptide, neuropeptide Y, orexin, and proopiomelanocortin (POMC) were analyzed by quantitative real-time polymerase chain reaction assay and plasma estradiol levels were measured by ELISA. Results: Males fed a HFD showed an increase in body weight and the amount of visceral and subcutaneous fat, which was coincident with an increase in the number of kilocalories ingested. Neonatal estradiol treatment restored the body weight and subcutaneous fat of HFD males to control levels. Hypothalamic POMC mRNA levels in HFD females were increased with respect to control females. This increase was reverted with estradiol treatment during development. Discussion: HFD and estradiol treatment have different effects on males and females. Overnutrition affects physiological parameters, such as body weight, visceral, and subcutaneous fat content, in males, while females present alterations in hypothalamic POMC mRNA levels. Hence, the increase in estradiol levels during a period that is critical for the programing of the feeding system can modulate some of the alterations produced by the continuous intake of high-fat content food.
  • Publicación
    Exposure to increased levels of estradiol during development can have long-term effects on the response to undernutrition in female rats
    (Taylor and Francis Group, 2016-11) Díaz González, Francisca; Chowen, Julie A.; Pino Osuna, María José; Carrillo Urbano, Beatriz; Collado Guirao, Paloma
    Objectives: Undernutrition during development alters the expression of peptides that control energy expenditure and feeding behavior. Estrogens can also modulate these peptides. Here we analyzed whether early postnatal administration of estradiol modulates the effects of undernutrition on neuroendocrine parameters in adult female Wistar rats. Methods: Control rats were fed a control diet. Undernourished pups were submitted to a restricted diet with half of the undernourished rats receiving 0.4 mg/kg s.c. of estradiol benzoate (EB) from postnatal day (P) 6 until P13. Quantitative real-time PCR was performed to determine expression in the hypothalamus of Agouti-related peptide (AgRP), proopiomelanocortin (POMC), neuropeptide Y (NPY) and cocaine- and amphetamine-regulated transcript (CART). Plasma estradiol, testosterone and adiponectin levels were measured by ELISA. Total and acylated ghrelin levels were measured in plasma by RIA. Results: Undernourishment decreased body weight, fat mass, plasma leptin and insulin levels and hypothalamic POMC mRNA levels. An increase in orexigenic signals AgRP and NPY mRNA levels, and in plasma adiponectin levels were found in undernourished animals. Early postnatal treatment with EB to undernourished female rats reversed the effects of undernutrition on adult hypothalamic POMC mRNA levels. In addition, neonatal EB treatment to undernourished females significantly decreased adult plasma testosterone, estradiol and acylated ghrelin levels. Discussion: Our results suggest that increased estradiol during a critical period of development has the capacity to modulate the alterations that undernutrition produces on energy metabolism.