Person: Santos, Olga C.
Loading...
Email Address
ORCID
0000-0002-9281-4209
Birth Date
2 results
Search Results
Now showing 1 - 2 of 2
Publication A Machine Learning Approach to Leverage Individual Keyboard and Mouse Interaction Behavior From Multiple Users in Real-World Learning Scenarios(Browse Journals & Magazines, 2018) Salmeron Majadas, Sergio; Baker, Ryan S.; Santos, Olga C.; González Boticario, Jesús; https://orcid.org/0000-0002-0544-0887; https://orcid.org/0000-0002-3051-3232; https://orcid.org/0000-0002-9281-4209There is strong evidence that emotions influence the learning process. For this reason, we explore the relevance of individual and general mouse and keyboard interaction patterns in real-world settings while learners perform free text tasks. To this end, we have modeled users' mouse movements and keystroke dynamics with data mining techniques, building on previous related research and extending it in terms of some critical modeling issues that may have an impact on detection results. Inspired by practice in affective computing where physiological sensors are used, we argue for the creation of an interaction baseline model, as a reference point in the way how learners interact with the keyboard and mouse. To make the proposed affective model feasible, we have adopted a simplified 2-D self-labeling approach for labeling the users' affective state. Our approach to affect detection improves results when there is a small amount of data instances available and does not require additional affect-oriented tasks from the learners. Specifically, learners are only asked to self-reflect their emotional state after finishing the tasks and immediately selecting two values in the affect scale. The approach we have followed aims to distill two types of interaction patterns: 1) within-subject patterns (from a single participant) and 2) between-subject patterns (across all participants). Doing this, we aim to combine both the approaches as modeling factors, thus taking advantage of individual and general interaction patterns to predict affect.Publication Impact of Physiological Signals Acquisition in the Emotional Support Provided in Learning Scenarios(MDPI, 2019-10-17) Uria Rivas, R.; Rodriguez Sanchez, Cristina; Santos, Olga C.; Vaquero, Joaquin; Jesus G. Boticario; González Boticario, Jesús; https://orcid.org/0000-0001-9243-2166; https://orcid.org/0000-0002-9281-4209; https://orcid.org/0000-0002-6976-0564Physiological sensors can be used to detect changes in the emotional state of users with affective computing. This has lately been applied in the educational domain, aimed to better support learners during the learning process. For this purpose, we have developed the AICARP (Ambient Intelligence Context-aware Affective Recommender Platform) infrastructure, which detects changes in the emotional state of the user and provides personalized multisensorial support to help manage the emotional state by taking advantage of ambient intelligence features. We have developed a third version of this infrastructure, AICARP.V3, which addresses several problems detected in the data acquisition stage of the second version, (i.e., intrusion of the pulse sensor, poor resolution and low signal to noise ratio in the galvanic skin response sensor and slow response time of the temperature sensor) and extends the capabilities to integrate new actuators. This improved incorporates a new acquisition platform (shield) called PhyAS (Physiological Acquisition Shield), which reduces the number of control units to only one, and supports both gathering physiological signals with better precision and delivering multisensory feedback with more flexibility, by means of new actuators that can be added/discarded on top of just that single shield. The improvements in the quality of the acquired signals allow better recognition of the emotional states. Thereof, AICARP.V3 gives a more accurate personalized emotional support to the user, based on a rule-based approach that triggers multisensorial feedback, if necessary. This represents progress in solving an open problem: develop systems that perform as effectively as a human expert in a complex task such as the recognition of emotional states