Persona: Durand Cartagena, Estibalitz
Cargando...
Dirección de correo electrónico
ORCID
0000-0001-6469-3633
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Durand Cartagena
Nombre de pila
Estibalitz
Nombre
1 resultados
Resultados de la búsqueda
Mostrando 1 - 1 de 1
Publicación Existence and uniqueness of ∞-harmonic functions under assumption of ∞-Poincaré inequality(Springer Nature, 2018-08-22) Durand Cartagena, Estibalitz; Jaramillo, Jesús A.; https://orcid.org/0000-0002-0197-6449; https://orcid.org/0000-0002-2891-5064Given a complete metric measure space whose measure is doubling and supports an ∞- Poincar´e inequality, and a bounded domain Ω in such a space together with a Lipschitz function f : ∂Ω → R, we show the existence and uniqueness of an ∞-harmonic extension of f to Ω. To do so, we show that there is a metric that is bi-Lipschitz equivalent to the original metric, such that with respect to this new metric the metric space satisfies an ∞- weak Fubini property and that a function which is ∞-harmonic in the original metric must also be ∞-harmonic with respect to the new metric. We also show that if the metric on the metric space satisfies an ∞-weak Fubini property, then the notion of ∞-harmonic functions coincide with the notion of AMLEs proposed by Aronsson. The notion of ∞-harmonicity is in general distinct from the notion of strongly absolutely minimizing Lipschitz extensions found in [13, 25, 26], but coincides when the metric space supports a p-Poincar´e inequality for some finite p ≥ 1.