Persona: Torre Cubillo, Luis de la
Cargando...
Dirección de correo electrónico
ORCID
0000-0002-9648-9597
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Torre Cubillo
Nombre de pila
Luis de la
Nombre
2 resultados
Resultados de la búsqueda
Mostrando 1 - 2 de 2
Publicación A remote laboratory for optical levitation of charged droplets(IOP Science, 2018-04-17) Galán, Daniel; Isaksson, Oscar; Rostedt, Mats; Enger, Jonas; Hanstorp, Dag; Torre Cubillo, Luis de laWe present a remotely controlled experiment in which liquid droplets are levitated by a vertically aligned focused laser beam. The droplets levitate at the point where the photon pressure of the focused laser beam balances the gravitational force. The size of a trapped droplet can be measured by detecting the diffraction pattern created by the trapping laser light. The charge on the trapped droplet can thereafter be determined by observing its motion when a vertically directed electrical field is applied. This experiment allows a student to study many fundamental physics processes, such as photon pressure, diffraction of light, or the motion of charged particles in electrical fields. The complexity of the experiments and the concept studied make this suitable for advanced studies in physics. The laser power required in the experiment is about 1 W, which is a thousand times greater than the value of 1 mW at which lasers begin to be capable of causing harm to eyes; high voltages are also used. Further, the cost of the equipment is relatively high, which limits its availability to most undergraduate teaching laboratories. It thus constitutes an ideal experiment for remote control.Publicación Safe experimentation in optical levitation of charged droplets using remote labs(MyJove Corporation, 2019-01-10) Galán, Daniel; Isaksson, Oscar; Enger, Jonas; Rostedt, Mats; Johansson, Andreas; Hanstorp, Dag; Torre Cubillo, Luis de laThe work presents an experiment that allows the study of many fundamental physical processes, such as photon pressure, diffraction of light or the motion of charged particles in electrical fields. In this experiment, a focused laser beam pointing upwards levitate liquid droplets. The droplets are levitated by the photon pressure of the focused laser beam which balances the gravitational force. The diffraction pattern created when illuminated with laser light can help measure the size of a trapped droplet. The charge of the trapped droplet can be determined by studying its motion when a vertically directed electrical field is applied. There are several reasons motivating this experiment to be remotely controlled. The investments required for the setup exceeds the amount normally available in undergraduate teaching laboratories. The experiment requires a laser of Class 4, which is harmful to both skin and eyes and the experiment uses voltages that are harmful.