Persona:
Moreno Salinas, David

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0002-0264-3419
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Moreno Salinas
Nombre de pila
David
Nombre

Resultados de la búsqueda

Mostrando 1 - 10 de 16
  • Publicación
    Applying Design Thinking to Enhance Programming Education in Vocational and Compulsory Secondary Schools
    (MDPI, 2023-11-29) Díaz Lauzurica, Belkis; Moreno Salinas, David
    A proper and complete formation in technology (science, communications, programming, robotics, Computational Thinking, etc.) must be imparted at all educational levels for a lifelong education. However, students may lose motivation or interest due to the complexity and abstraction of some of the concepts imparted. In line with this, the work at hand looks to improve the interest and commitment of students by presenting the programming concepts and contents in a practical way. The teaching–learning process is based on the development of projects about robotics, which are adapted for courses and groups of different educational levels. The Design Thinking methodology is used to impart the content. This methodology allows the students to experiment, design and test different solutions for a given problem, increasing their motivation and interest, promoting creativity, and making the students conscious of their learning process. Two different projects are considered, a simulated one based on a sensor network to localise and track a robot in a closed area for vocational education students, and an experimental one about constructing a robot with several capabilities using Lego Mindstorms for compulsory secondary education students. The results obtained over three different groups of students are analysed and compared, and show that the methodology and projects selected can be adopted and adapted for different educational levels, increasing the proficiency of the students, their development, motivation and self-learning despite the difficulty and complexity of some concepts related to computer science.
  • Publicación
    Fault-Tolerant Control for AUVs Using a Single Thruster
    (IEEE, 2022-02) Chaos García, Dictino; Moreno Salinas, David; Aranda Almansa, Joaquín
    The present paper presents a fault-tolerant control for an AUV in the presence of a critical failure in the actuators that may require an emergency operation to recover it or to drive it to a safe point. In this context, the control scheme proposed deals with a single thruster in operational conditions to command the vehicle towards a desired direction and reach a safe target point. In addition, the AUV is commanded with only two control actions on the available thruster, driving the vehicle through the desired direction following a spiral-like path and keeping it within the neighbourhood of the target point. The fault-tolerant control proposed is simple and robust enough to be applied to multiple kinds of AUVs without the need of accurate parameter design. The stability and well performance of the control scheme proposed is analytically demonstrated, and simulation examples illustrate the key results derived.
  • Publicación
    Hands Stencils in El Castillo Cave (Puente Viesgo, Cantabria, Spain). An Interdisciplinary Study.
    (Cambridge University Press, 2021-10-11) Ripoll López, Sergio; Bayarri Cayón, Vicente; Muñoz Ibáñez, Francisco Javier; Ortega, Ricardo; Castillo, Elena; Latova, José; Herrera, Jesús; Moreno Salinas, David; Martín, Ignacio; https://orcid.org/0000-0002-3656-7995
    Our Palaeolithic ancestors did not make good representations of themselves on the rocky surfaces of caves and barring certain exceptions – such as the case of La Marche (found on small slabs of stone or plaquettes) or the Cueva de Ambrosio – the few known examples can only be referred to as anthropomorphs. As such, only hand stencils give us a real picture of the people who came before us. Hand stencils and imprints provide us with a large amount of information that allows us to approach not only their physical appearance but also to infer less tangible details, such as the preferential use of one hand over the other (i.e., handedness). Both new and/or mature technologies as well as digital processing of images, computers with the ability to process very high resolution images, and a more extensive knowledge of the Palaeolithic figures all help us to analyse thoroughly the hands in El Castillo cave. The interdisciplinary study presented here contributes many novel developments based on real data, representing a major step forward in knowledge about our predecessors.
  • Publicación
    Optimisation of spectrum use by Mode S surveillance systems through coordinated DAP extraction
    (IEEE Xplore, 2024-10-17) Ceballos Gutierrez, Javier; Aranda Escolástico, Ernesto; Moreno Salinas, David; https://orcid.org/0000-0001-6440-6120
    The cooperative surveillance systems used for air traffic management rely completely on air–ground transactions carried out in the 1030/1090 MHz frequency bands to fulfill their surveillance mission. However, these spectrum bands are currently subject to an excessive number of transactions that make difficult the access to the channels and often exceed the reply capabilities of aircraft transponders, which may impact air traffic capacity or even create safety risks. Several mitigation strategies have been studied in recent years to decrease the occupancy of the 1030/1090 MHz bands. Nevertheless, none of the proposed strategies have yet addressed the possibility of decreasing transactions related to downlinked aircraft parameters (DAP) extracted from transponder registers of aircraft. This work proposes and tests a methodology to coordinate the DAP extractions performed by several Mode S systems in order to avoid a high number of unnecessary transactions in the spectrum channels, while keeping the same level of information available at the endpoint of the surveillance chain.
  • Publicación
    Optimal control law of an AUV using a single thruster
    (Comité Español de Autonomática (CEA-IFAC), 2023) Cerrada Collado, Cristina; Chaos García, Dictino; Moreno Salinas, David; Aranda Almansa, Joaquín
    En este artículo se plantea el problema de optimización de una ley de control para minimizar el error cuadrático integral al conducir un AUV (Autonomous Underwater Vehicle, vehículo autónomo submarino) actuado con un único motor desde un punto de partida hasta una zona de recuperación deseada. Así mismo se muestran dos posibles soluciones de control y se discute su implementación en el vehículo. Para la optimización de la ley de control se utilizarán los algoritmos genéticos y se proponen dos soluciones: En la primera se optimiza la ley de control muestreada en función del tiempo. La segunda, por su parte, emplea una acción de control óptima en función de la orientación del vehículo a partir de una ley de control representada mediante una serie de Fourier. El correcto funcionamiento de las soluciones propuestas se demuestra mediante una serie de simulaciones que consideran distintas condiciones y situaciones posibles.
  • Publicación
    Range-based target localization and pursuit with autonomous vehicles: An approach using posterior CRLB and model predictive control
    (Elsevier, 2020-08-08) Hung, Nguyen T.; Crasta, Naveen; Moreno Salinas, David; Pascoal, Antonio M.; Johansen , Tor A.
    We address the general problem of multiple target localization and pursuit using measurements of the ranges from the targets to a set of autonomous pursuing vehicles, referred to as trackers. We develop a general framework for targets with models exhibiting uncertainty in the initial state, process, and measurement noise. The main objective is to compute optimal motions for the trackers that maximize the range-based information available for target localization and at the same time yield good target pursuit performance. The solution proposed is rooted in an estimation-theoretical setting that involves the computation of an appropriately defined Bayesian Fisher Information Matrix (FIM). The inverse of the latter yields a posterior Cramér–Rao Lower Bound (CRLB) on the covariance of the targets’ state estimation errors that can be possibly achieved with any estimator. Using the FIM, sufficient conditions on the trackers’ motions are derived for the ideal relative geometry between the trackers and the targets for which the range information acquired is maximal. This allows for an intuitive understanding of the types of ideal tracker trajectories. To deal with realistic constraints on the trackers’ motions and the requirement that the trackers pursue the targets, we then propose a model predictive control (MPC) framework for optimal tracker motion generation with a view to maximizing the predicted range information for target localization while taking explicitly into account the trackers’ dynamics, strict constraints on the trackers’ states and inputs, and prior knowledge about the targets’ states. The efficacy of the MPC is assessed in simulation through the help of representative examples motivated by operational scenarios involving single and multiple targets and trackers.
  • Publicación
    An energy efficient fault-tolerant controller for homing of underactuated AUVs
    (Elsevier, 2024) Pascoal, António; Chaos García, Dictino; Moreno Salinas, David; Aranda Almansa, Joaquín; Cerrada Collado, Cristina
    In the event of a failure that will prevent an Autonomous Underwater Vehicle (AUV) from executing a specified task, the vehicle must be recovered safely to avoid further damage to itself or to other vehicles/agents in the neighbourhood. Motivated by this operational requirement, this work presents an optimal fault-tolerant controller to drive an underactuated AUV to a recovery point (so-called automatic homing manoeuvre). The case of a critical failure that leaves only one of two stern thrusters available to drive it to the desired recovery area is considered. The control law proposed relies on the use of a Fourier series-based strategy to compute the control action as a function of the relative orientation of the vehicle with respect to the target recovery point. Energy consumption is also considered in the proposed control law, so that an appropriate trade-off can be achieved between reaching the destination faster and reducing the energy consumed as a function of mission requirements and vehicle specifications. The stability and convergence of the proposed scheme are demonstrated analytically, a comparison with MPC scheme is shown and simulation examples illustrate how the control law effectively drives the vehicle to a neighbourhood of the desired target point even in the presence of unknown constant currents.
  • Publicación
    Modelling of a surface marine vehicle with kernel ridge regression confidence machine
    (Elsevier, 2018-12-27) Moreno Salinas, David; Moreno, Raul; Pereira, Augusto; Aranda Almansa, Joaquín; Cruz, Jesus M. de la
    This paper describes the use of Kernel Ridge Regression (KRR) and Kernel Ridge Regression Confidence Machine (KRRCM) for black box identification of a surface marine vehicle. Data for training and test have been obtained from several manoeuvres typically used for marine system identification. Thus, a 20/20 degrees Zig-Zag, a 10/10 degrees Zig-Zag, and different evolution circles have been employed for the computation and validation of the model. Results show that the application of conformal prediction provides an accurate model that reproduces with large accuracy the actual behaviour of the ship with confidence margins that ensure that the model response is within these margins, making it a suitable tool for system identification.
  • Publicación
    Computational Thinking and Robotics: A Teaching Experience in Compulsory Secondary Education with Students with High Degree of Apathy and Demotivation
    (MDPI, 2019-09-18) Díaz Lauzurica, Belkis; Moreno Salinas, David
    In present and future society, all individuals must be able to face the problems, risks, advantages and opportunities that will arrive with new paradigms in the labour market, social relations and technology. To reach this goal, a quality and inclusive education together with a proper and complete formation in technology (communications, robotics, programming, computational thinking (CT), etc.) must be imparted at all educational levels. Moreover, all individuals should have the same opportunities to develop their skills and knowledge, as stated in Goal 4 of the Sustainable Development Goals, Sustainable Education. Following this trend, in the present work, a practical experience about how to teach CT using robotics is developed, showing the results and evaluation of the lessons on robotics taught to students in their 4th year of compulsory secondary education, and where the students showed a high degree of apathy and demotivation. The teaching unit was based on an action research approach that includes a careful selection of pedagogical techniques and instruments to attract and keep the attention and interest of the students. In addition to the robotics lessons, a previous computational thinking training with Blockly Games was carried out, which contributed to noticeably increase the students motivation and to introduce them to the programming of robots. Moreover, gamification was used to motivate and evaluate the individual knowledge, and the students were required to present the work performed through a final project. The individual needs of the students were fulfilled with a daily monitoring. The results show that the pedagogical techniques, instruments and evaluation were adequate to increase the motivation of the students and to obtain a significant learning, showing how the teaching of CT may attract students that have lost interest and motivation, while providing them with abilities that will be essential for the learning throughout life.
  • Publicación
    Multiple autonomous surface vehicle motion planning for cooperative range-based underwater target localization
    (Elsevier, 2018-12-03) Crasta, N.; Moreno Salinas, David; Pascoal, A.M.; Aranda Almansa, Joaquín
    Range-based target localization is an important class of problems that arise in an increasing number of scientific and commercial missions at sea. Underwater target localization refers to the task of estimating the positions of fixed or moving underwater targets by using range measurements between the targets and one or more autonomous surface vehicles (ASVs), called trackers, undergoing trajectories that are known in real time. In this context, the trackers must execute sufficiently exciting maneuvers so as to maximize the range-based information available for multiple target localization. In this paper, adopting an estimation theoretical setting, we first propose a general methodology for tracker motion planning that results from maximizing the determinant of an appropriately defined Fisher information matrix (FIM) subject to inter-vehicle collision avoidance and vehicle maneuvering constraints. Then, for the single-target single-tracker problem (which is the dual problem of the classical single-beacon navigation problem), we provide a family of analytical solutions for the optimal tracker trajectories and complement the results with a practical experiment using a tracker when the target undergoes trajectories that are straight lines, pieces of arcs, or a combination thereof. In the methodology adopted for system implementation the tracker runs three key algorithms simultaneously, over a sliding time window: (i) tracker motion planning, (ii) tracker motion control, and (iii) target motion estimation based on range data acquired on-line. In order to simplify the types of trajectories that the tracker must undergo in the single target localization problem, we extend the above set-up to the case where the tracker works in cooperation with another vehicle, called companion, that can also measure ranges to the target and share this info with the tracker. The latter may have access to the position of the companion or, in some cases, only to the range between the two vehicles. We consider three different operating scenarios where the motion of the tracker is chosen so as to increase the accuracy with which the position of the target can be estimated. The scenarios reflect the situations where the motion of the companion vehicle satisfies one of three conditions: (i) the motion is not defined a priori and can also be optimized, (ii) the motion is fixed a priori and is known to the tracker (scenario in which the tracker benefits from the extra information acquired by the companion vehicle, which tracks a desired trajectory in the context of a separate, independent mission), and (iii) the motion is not known a priori and must be learned in the course of the mission. Simulation results illustrate the methodology adopted for cooperative target localization.