Persona: Moreno Salinas, David
Cargando...
Dirección de correo electrónico
ORCID
0000-0002-0264-3419
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Moreno Salinas
Nombre de pila
David
Nombre
14 resultados
Resultados de la búsqueda
Mostrando 1 - 10 de 14
Publicación Design and Development of an SVM-Powered Underwater Acoustic Modem(MDPI, 2024-05-05) Guerrero Chilaber, Gabriel S.; Moreno Salinas, David; Sánchez Moreno, José; https://orcid.org/0009-0009-9959-0250Underwater acoustic communication is fraught with challenges, including signal distortion, noise, and interferences unique to aquatic environments. This study aimed to advance the field by developing a novel underwater modem system that utilizes machine learning for signal classification, enhancing the reliability and clarity of underwater transmissions. This research introduced a system architecture incorporating a Lattice Semiconductors FPGA for signal modulation and a half-pipe waveguide to emulate the underwater environment. For signal classification, support vector machines (SVMs) were leveraged with the continuous wavelet transform (CWT) employed for feature extraction from acoustic signals. Comparative analysis with traditional signal processing techniques highlighted the efficacy of the CWT in this context. The experiments and tests carried out with the system demonstrated superior performance in classifying modulated signals under simulated underwater conditions, with the SVM providing a robust classification despite the presence of noise. The use of the CWT for feature extraction significantly enhanced the model’s accuracy, eliminating the need for further dimensionality reduction. Therefore, the integration of machine learning with advanced signal processing techniques presents a promising research line for overcoming the complexities of underwater acoustic communication. The findings underscore the potential of data mining methodologies to improve signal clarity and transmission reliability in aquatic environments.Publicación Low-Cost Portable System for Measurement and Representation of 3D Kinematic Parameters in Sport Monitoring: Discus Throwing as a Case Study(MDPI, 2022-12-02) Navarro Iribarne, Juan Francisco; Moreno Salinas, David; Sánchez Moreno, José; https://orcid.org/0000-0001-6994-3064Monitoring of sports practice has become an almost essential tool in high-level professional training. The knowledge of the exact movements performed by an athlete provides a great advantage over conventional training, since the best performance can be theoretically known in advance and the trainer will expect the real athlete’s movements to approximate it. Following this trend, this article deals with the design and development of a low-cost wearable biofeedback system for the measurement and representation of kinematic parameters in 3D. To capture the athlete’s movements, an inertial measurement unit (IMU) is used, whose data are processed in an microcontroller-based architecture. The kinematic parameters of the athlete’s movement are sent via Bluetooth to a smart phone, where they are displayed graphically. Experimental examples show the effectiveness of the device developed and illustrate the key results derived.Publicación Optimal control law of an AUV using a single thruster(Comité Español de Autonomática (CEA-IFAC), 2023) Cerrada Collado, Cristina; Chaos García, Dictino; Moreno Salinas, David; Aranda Almansa, JoaquínEn este artículo se plantea el problema de optimización de una ley de control para minimizar el error cuadrático integral al conducir un AUV (Autonomous Underwater Vehicle, vehículo autónomo submarino) actuado con un único motor desde un punto de partida hasta una zona de recuperación deseada. Así mismo se muestran dos posibles soluciones de control y se discute su implementación en el vehículo. Para la optimización de la ley de control se utilizarán los algoritmos genéticos y se proponen dos soluciones: En la primera se optimiza la ley de control muestreada en función del tiempo. La segunda, por su parte, emplea una acción de control óptima en función de la orientación del vehículo a partir de una ley de control representada mediante una serie de Fourier. El correcto funcionamiento de las soluciones propuestas se demuestra mediante una serie de simulaciones que consideran distintas condiciones y situaciones posibles.Publicación Composición fotográfica mediante el uso de un dron(Comité Español de Automática, 2024-07-15) Sánchez García, Juan Miguel; Sánchez Moreno, José; Moreno Salinas, DavidLa composición fotográfica, conocida como mosaicos, es crucial en aplicaciones donde no es posible capturar toda la extensión de grandes superficies en una sola toma. Por ende, se requiere fotografiar secciones más pequeñas para luego componerlas y lograr una reproducción lo más precisa posible de la realidad. En este trabajo se presenta el resultado de aplicar los principios de las distintas etapas necesarias para crear un mosaico, complementado con el uso de un dron para la captura de las imágenes. La creación del mosaico implica técnicas avanzadas de procesamiento de imágenes que facilitan la detección de características, la transformación geométrica y la alineación de píxeles. Sin embargo, la experimentación con diferentes algoritmos ha revelado que no siempre es viable encontrar una transformación geométrica que produzca un mosaico de calidad, especialmente cuando las características de la fotografía no son óptimas, lo cual puede ser atribuible, en parte, a la resolución de los dispositivos fotográficos utilizados.Publicación A cost-effective design for a mid-range microcontroller-based lock-in amplifier(Elsevier, 2025-03) Horcas, Ignacio; Moreno Salinas, David; Sánchez Moreno, JoséLock-in amplifiers are instruments widely used in physics and engineering laboratories, whose invention goes back to the 1940s. Due to the late electronic developments, the former analog implementations have been replaced with digital versions, mainly based on FPGAs (field-programmable gate arrays). The present work, exploiting the last advances in the microcontrollers field, consists in the development of a functional prototype of a low-cost lock-in amplifier based on a microcontroller with similar specifications to mid-range commercial amplifiers. The performance of the prototype has been tested and compared with commercial devices, showing a similar performance in common use cases at a much reduced cost.Publicación Full Real-Time Positioning and Attitude System Based on GNSS-RTK Technology(MDPI, 2020-11-20) Olivart i Llop, J. M.; Moreno Salinas, David; Sánchez Moreno, JoséAn accurate positioning and attitude computation of vehicles, robots, or even persons is of the utmost importance and critical for the success of many operations in multiple commercial, industrial, and research areas. However, most of these positioning and attitude systems rely on inertial measurement units that must be periodically recalibrated and have a high cost. In the present work, the design of a real-time positioning and attitude system using three positioning sensors based on the GNSS-RTK technology is presented. This kind of system does not need recalibration, and it allows one to define the attitude of a solid by only computing the position of the system in the global reference system and the three angles that the relative positions of the GNSS antennas define with respect to the principal axes of the solid. The position and attitude can be computed in real time for both static and dynamic scenarios. The only limitation of the system is that the antennas need to be in open air to work at full performance and accuracy. All the design phases are covered in the prototype construction: requirement definition, hardware selection, software design, assembly, and validation. The feasibility and performance of the system were tested in both static and dynamic real scenarios.Publicación Range-based target localization and pursuit with autonomous vehicles: An approach using posterior CRLB and model predictive control(Elsevier, 2020-08-08) Hung, Nguyen T.; Crasta, Naveen; Moreno Salinas, David; Pascoal, Antonio M.; Johansen , Tor A.We address the general problem of multiple target localization and pursuit using measurements of the ranges from the targets to a set of autonomous pursuing vehicles, referred to as trackers. We develop a general framework for targets with models exhibiting uncertainty in the initial state, process, and measurement noise. The main objective is to compute optimal motions for the trackers that maximize the range-based information available for target localization and at the same time yield good target pursuit performance. The solution proposed is rooted in an estimation-theoretical setting that involves the computation of an appropriately defined Bayesian Fisher Information Matrix (FIM). The inverse of the latter yields a posterior Cramér–Rao Lower Bound (CRLB) on the covariance of the targets’ state estimation errors that can be possibly achieved with any estimator. Using the FIM, sufficient conditions on the trackers’ motions are derived for the ideal relative geometry between the trackers and the targets for which the range information acquired is maximal. This allows for an intuitive understanding of the types of ideal tracker trajectories. To deal with realistic constraints on the trackers’ motions and the requirement that the trackers pursue the targets, we then propose a model predictive control (MPC) framework for optimal tracker motion generation with a view to maximizing the predicted range information for target localization while taking explicitly into account the trackers’ dynamics, strict constraints on the trackers’ states and inputs, and prior knowledge about the targets’ states. The efficacy of the MPC is assessed in simulation through the help of representative examples motivated by operational scenarios involving single and multiple targets and trackers.Publicación Optimisation of spectrum use by Mode S surveillance systems through coordinated DAP extraction(IEEE Xplore, 2024-10-17) Ceballos Gutierrez, Javier; Aranda Escolástico, Ernesto; Moreno Salinas, David; https://orcid.org/0000-0001-6440-6120The cooperative surveillance systems used for air traffic management rely completely on air–ground transactions carried out in the 1030/1090 MHz frequency bands to fulfill their surveillance mission. However, these spectrum bands are currently subject to an excessive number of transactions that make difficult the access to the channels and often exceed the reply capabilities of aircraft transponders, which may impact air traffic capacity or even create safety risks. Several mitigation strategies have been studied in recent years to decrease the occupancy of the 1030/1090 MHz bands. Nevertheless, none of the proposed strategies have yet addressed the possibility of decreasing transactions related to downlinked aircraft parameters (DAP) extracted from transponder registers of aircraft. This work proposes and tests a methodology to coordinate the DAP extractions performed by several Mode S systems in order to avoid a high number of unnecessary transactions in the spectrum channels, while keeping the same level of information available at the endpoint of the surveillance chain.Publicación Applying Design Thinking to Enhance Programming Education in Vocational and Compulsory Secondary Schools(MDPI, 2023-11-29) Díaz Lauzurica, Belkis; Moreno Salinas, DavidA proper and complete formation in technology (science, communications, programming, robotics, Computational Thinking, etc.) must be imparted at all educational levels for a lifelong education. However, students may lose motivation or interest due to the complexity and abstraction of some of the concepts imparted. In line with this, the work at hand looks to improve the interest and commitment of students by presenting the programming concepts and contents in a practical way. The teaching–learning process is based on the development of projects about robotics, which are adapted for courses and groups of different educational levels. The Design Thinking methodology is used to impart the content. This methodology allows the students to experiment, design and test different solutions for a given problem, increasing their motivation and interest, promoting creativity, and making the students conscious of their learning process. Two different projects are considered, a simulated one based on a sensor network to localise and track a robot in a closed area for vocational education students, and an experimental one about constructing a robot with several capabilities using Lego Mindstorms for compulsory secondary education students. The results obtained over three different groups of students are analysed and compared, and show that the methodology and projects selected can be adopted and adapted for different educational levels, increasing the proficiency of the students, their development, motivation and self-learning despite the difficulty and complexity of some concepts related to computer science.Publicación Computational Thinking and Robotics: A Teaching Experience in Compulsory Secondary Education with Students with High Degree of Apathy and Demotivation(MDPI, 2019-09-18) Díaz Lauzurica, Belkis; Moreno Salinas, DavidIn present and future society, all individuals must be able to face the problems, risks, advantages and opportunities that will arrive with new paradigms in the labour market, social relations and technology. To reach this goal, a quality and inclusive education together with a proper and complete formation in technology (communications, robotics, programming, computational thinking (CT), etc.) must be imparted at all educational levels. Moreover, all individuals should have the same opportunities to develop their skills and knowledge, as stated in Goal 4 of the Sustainable Development Goals, Sustainable Education. Following this trend, in the present work, a practical experience about how to teach CT using robotics is developed, showing the results and evaluation of the lessons on robotics taught to students in their 4th year of compulsory secondary education, and where the students showed a high degree of apathy and demotivation. The teaching unit was based on an action research approach that includes a careful selection of pedagogical techniques and instruments to attract and keep the attention and interest of the students. In addition to the robotics lessons, a previous computational thinking training with Blockly Games was carried out, which contributed to noticeably increase the students motivation and to introduce them to the programming of robots. Moreover, gamification was used to motivate and evaluate the individual knowledge, and the students were required to present the work performed through a final project. The individual needs of the students were fulfilled with a daily monitoring. The results show that the pedagogical techniques, instruments and evaluation were adequate to increase the motivation of the students and to obtain a significant learning, showing how the teaching of CT may attract students that have lost interest and motivation, while providing them with abilities that will be essential for the learning throughout life.