Persona:
Sánchez Moreno, José

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0002-6702-3771
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Sánchez Moreno
Nombre de pila
José
Nombre

Resultados de la búsqueda

Mostrando 1 - 2 de 2
  • Publicación
    Asymmetric delayed relay feedback identification based on the n-shifting approach
    (Taylor and Francis Group, 2021-08-20) Sánchez Moreno, José; Dormido Bencomo, Sebastián; Miguel Escrig, Oscar; Romero Pérez, Julio Ariel; https://orcid.org/0000-0002-2405-8771; https://orcid.org/0000-0002-2472-2038; https://orcid.org/0000-0003-3397-2239
    The paper presents an improvement of the n-shifting technique to identify the frequency response of an industrial process using a fully asymmetric and delaying relay. The n-shifting approach allows the calculation of n + 1 points of G(s) by an asymmetric relay experiment. This set of n points is composed of G(0), G(jωosc), . . . , G(jnωosc), being ωoscthe oscillation frequency, and where G(jωosc) is in most cases located in the third quadrant of the Nyquist map. By delaying the relay output and repeating a similar experiment it can be generated n additional points of G(s) where the first point is G(jω’ osc) with 0 < ω’osc < ωosc. In this way, it is possible to depict the full output spectrum of G(s) from zero to very high frequencies by a short relay experiment. An example of identification and tuning of a PID controller with data from the n-shifting are presented to show the validity of the approach.
  • Publicación
    Multiple frequency response points identification through single asymmetric relay feedback experiment
    (Elsevier, 2023-01) Miguel Escrig, Oscar; Romero Pérez, Julio Ariel; Dormido Canto, Sebastián; Sánchez Moreno, José; https://orcid.org/0000-0003-3397-2239
    In this paper a methodology to identify several points of the frequency response of a system using a single experiment is proposed. The identification is performed using the information obtained from an asymmetric relay feedback experiment. The frequency response points that are estimated correspond to the fundamental oscillation frequency induced by the asymmetric relay and its harmonics. The method is easy to implement since it only requires linear algebra operations, but relies on a proper data selection, which is largely studied, to obtain the most accurate results. The proposed method allows a Least Squares formulation, which has also been studied, and presents some benefits in terms of accuracy for certain cases. The presented results are validated experimentally using a practical identification case.