Persona: Español Garrigos, José
Cargando...
Dirección de correo electrónico
ORCID
0000-0001-5263-2817
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Español Garrigos
Nombre de pila
José
Nombre
2 resultados
Resultados de la búsqueda
Mostrando 1 - 2 de 2
Publicación Boundary conditions derived from a microscopic theory of hydrodynamics near solids(American Institute of Physics, 2019-04-08) Camargo-Trillos, Diego; Torre Rodríguez, Jaime Arturo de la; Delgado Buscalioni, Rafael; Chejne, Farid; Español Garrigos, JoséThe theory of nonlocal isothermal hydrodynamics near a solid object derived microscopically in the study by Camargo et al. [J. Chem. Phys. 148, 064107 (2018)] is considered under the conditions that the flow fields are of macroscopic character. We show that in the limit of macroscopic flows, a simple pillbox argument implies that the reversible and irreversible forces that the solid exerts on the fluid can be represented in terms of boundary conditions. In this way, boundary conditions are derived from the underlying microscopic dynamics of the fluid-solid system. These boundary conditions are the impenetrability condition and the Navier slip boundary condition. The Green-Kubo transport coefficients associated with the irreversible forces that the solid exert on the fluid appear naturally in the slip length. The microscopic expression for the slip length thus obtained is shown to coincide with the one provided originally by Bocquet and Barrat [Phys. Rev. E 49, 3079 (1994)].Publicación Microscopic Slip Boundary Conditions in Unsteady Fluid Flows(American Physical Society, 2019-12-31) Torre Rodríguez, Jaime Arturo de la; Duque Zumajo, Diego; Camargo-Trillos, Diego; Español Garrigos, JoséAn algebraic tail in the Green-Kubo integral for the solid-fluid friction coefficient hampers its use in the determination of the slip length. A simple theory for discrete nonlocal hydrodynamics near parallel solid walls with extended friction forces is given. We explain the origin of the algebraic tail and give a solution of the plateau problem in the Green-Kubo expressions. We derive the slip boundary condition with a microscopic expression for the slip length and the hydrodynamic wall position, and assess it through simulations of an unsteady plug flow.