Persona:
Muñiz González, Ana Belén

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0001-8285-7582
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Muñiz González
Nombre de pila
Ana Belén
Nombre

Resultados de la búsqueda

Mostrando 1 - 2 de 2
  • Publicación
    Environmentally Relevant Concentrations of the Insecticide Fipronil Modulated Molecular Response in Chironomus riparius
    (Wiley, 2023-11-29) da Silva Pinto, Thandy Junio; Martínez Guitarte, José Luis; Dias, Mariana Amaral; Montagner, Cassiana Carolina; Gaeta Espindola, Evaldo Luiz; Muñiz González, Ana Belén
    Pesticides employed worldwide for crop protection easily reach aquatic systems, which act as the main reservoirs, and become a risk factor for aquatic fauna. Fipronil is a broad‐spectrum insecticide acting on the insect nervous system; however, other effects and systems unrelated to this mechanism could be affected in non‐target organisms. Thus, the present study aimed to assess the impact of fipronil on the suborganismal response (gene expression and enzymatic activity) of Chironomus riparius larvae as a model organism in ecotoxicology. To this end, short‐term toxicity tests were carried out with fourth‐instar larvae exposed to 0.001, 0.01, and 0.1 μg L−1 of fipronil for 24 and 96 h. Messenger RNA levels of 42 genes related to diverse metabolic pathways were analyzed by real‐time polymerase chain reaction, complemented with catalase (CAT), glutathione S‐transferase (GST), and acetylcholinesterase (AChE) activities. Few effects were observed at 24 h; however, after longer exposure (96 h), genes involved in the endocrine, detoxification, stress, and immune response pathways were altered. Moreover, fipronil at 96 h increased CAT and GST activity at 0.01 μg L−1 and AChE at the highest concentrations. The results demonstrate that even low environmentally relevant fipronil concentrations can modulate the molecular response of several cellular pathways in C. riparius after short‐term exposure. These results bring new information about the underlying response of fipronil and its mode of action on a key aquatic invertebrate. Despite no effects on mortality, strong modulation at the suborganismal level emphasizes the advantage of biomarkers as early damage responses and the harmful impact of this pesticide on freshwater organisms. Environ Toxicol Chem 2024;43:405–417. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
  • Publicación
    New insights about the toxicity of 2,4-D: Gene expression analysis reveals modulation on several subcellular responses in Chironomus riparius
    (Elsevier, 2024-09) da Silva Pinto, Thandy Junio; Martínez Guitarte, José Luis; Amaral Dias, Mariana; Montagner, Cassiana Carolina; Gaeta Espindola, Evaldo Luiz; Muñiz González, Ana Belén; Elsevier
    Herbicides are the main class of pesticides applied in crops and are capable of polluting the surrounding freshwater system; thus, understanding their impact on non-target species, whose mechanism of action is not described, helps to elucidate the real risks of these pollutants to the environment. 2,4-dichlorophenoxyacetic acid (2,4-D) is frequently detected in water and, due to its persistence, poses a risk to wildlife. In this way, the present work aimed to describe the implication of exposure to concentrations of 2,4-D already reported in aquatic environments in several physiological mechanisms of C. riparius at molecular and biochemical levels. To achieve this, bioassays were conducted with fourth instar larvae exposed to three concentrations of 2,4-D (0.1, 1.0, and 7.5 μg L 1). Larvae were collected after 24 and 96 h of exposure, and the expression of 42 genes, related to six subcellular mechanisms, was assessed by Real-Time PCR (RT-PCR). Besides, the activity of the enzymes catalase (CAT), glutathione S-transferase (GST), and acetylcholinesterase (AChE) was determined. The main metabolic route altered after exposure to 2,4-D was the endocrine system (mainly related to 20-hydroxyecdysone and juvenile hormone), confirming its endocrine disruptor potential. Four of the eleven stress response genes studied were down-regulated, and later exposure modulated DNA-repair genes suggesting genotoxic capacity. Moreover, only one gene from each detoxification phase was modulated at short exposure to 1.0 μg L 1. The molecular responses were not dose-dependent, and some early responses were not preserved after 96 h, indicating a transient response to the herbicide. Exposure to 2,4-D did not alter the activity of CAT, GST, and AChE enzymes. The responses described in this study reveal new mechanistic pathways of toxicity for 2,4-D in non-target organisms and highlight potential ecological consequences for chironomids in aquatic systems at the edges of agricultural fields.