Persona: Porto Ferreira da Silva, Ana María
Cargando...
Dirección de correo electrónico
ORCID
0000-0001-7005-7908
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Porto Ferreira da Silva
Nombre de pila
Ana María
Nombre
2 resultados
Resultados de la búsqueda
Mostrando 1 - 2 de 2
Publicación Note on topologically singular points in themoduli space of Riemann surfaces of genus 2(Springer, 2019-06-20) Costa González, Antonio Félix; Porto Ferreira da Silva, Ana MaríaLet Mg be the moduli space of Riemann surfaces of genus g. Rauch (Bull Am Math Soc 68:390–394, 1962) focused his attention on and determined the so-called topological singular points ofMg: these are the points ofMg whose neighbourhoods are not homeomorphic to a ball. In a previous paper, the authors produced a topological proof for Rauch’s result for genera > 2; however, the methods used there do not apply to the genus 2 case. The only known proof for the remaining and important case, i.e., the case of singular points inM2, is to be found in an article by Igusa (Ann Math 72(3):612–649, 1960) and it lays on methods from algebraic geometry. Here, we present a topological proof for this case too.Publicación On the connectedness of the branch locus of moduli space of hyperelliptic Klein surfaces with one boundary(2015-01-01) Izquierdo, Milagros; Costa González, Antonio Félix; Porto Ferreira da Silva, Ana MaríaAbstract. In this work we prove that the hyperelliptic branch locus of ori- entable Klein surfaces of genus g with one boundary component is connected and in the case of non-orientable Klein surfaces it has g+1 2 components, if g is odd, and g+2 2 components for even g. We notice that, for non-orientable Klein surfaces with two boundary components, the hyperelliptic branch loci are connected for all genera.