Persona:
Barros Camargo, Claudia de

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0002-2286-8674
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Barros Camargo
Nombre de pila
Claudia de
Nombre

Resultados de la búsqueda

Mostrando 1 - 2 de 2
  • Publicación
    Neuropedagogy and Neuroimaging of Artificial Intelligence and Deep Learning
    (Universitepark Publishing, 2024-10-21) Barros Camargo, Claudia de; Hernández Fernández, Antonio
    Background/Purpose. This study investigates the integration of neuropedagogy, neuroimaging, artificial intelligence (AI), and deep learning in educational systems. The research aims to elucidate how these technologies can be synergistically applied to optimize learning processes based on individual neurocognitive profiles, thereby enhancing educational effectiveness. Materials/Methods. A mixed-methods approach was employed, incorporating both quantitative and qualitative analyses. The study involved 297 students and 59 teachers. Quantitative methods included exploratory factor analysis (EFA) to validate the Neuropedagogy, Neuroimaging, Artificial Intelligence, and Deep Learning Scale, and Spearman correlations to examine inter-variable relationships. Qualitative data were collected through focus groups and analyzed using selective coding. Additionally, a comparative case study using portable electroencephalography (EEG) was conducted to observe direct neurological effects of different learning approaches. Results. EFA confirmed the construct validity of the scale (KMO = .89, p < .001). Spearman correlations revealed significant positive relationships between all dimensions (.65-.72, p < .01). Multiple regression analysis indicated that AI was the strongest predictor of deep learning (β = 0.39, p < .001). The neuroimaging case study demonstrated increased frontal and prefrontal lobe activation and enhanced theta-gamma wave synchronization in AI-supported learning tasks, suggesting more integrated information processing. Conclusion. The findings provide empirical evidence for the transformative potential of integrating neuropedagogy, neuroimaging, AI, and deep learning in education. The strong predictive relationship between AI and deep learning, coupled with the neuroimaging results, suggests that this technological convergence can significantly enhance learning processes. However, the study also highlighted the need for careful ethical considerations in its implementation. These results contribute to the growing body of knowledge on technology-enhanced learning and offer a foundation for developing more personalized and effective educational strategies.
  • Publicación
    Análisis a través de modelaje estructural de la relación entre prácticas docentes, pluriculturalidad e inclusión educativa
    (Universidad de Murcia, 2021) Barros Camargo, Claudia de; Hernández Fernández, Antonio; Ortiz Cobo, Mónica
    El presente artículo tiene como objetivo analizar la relación entre las prácticas docentes desde el enfoque de la pluriculturalidad y la inclusión educativa. El diseño de investigación es no experimental, explicativo y correlacional. Se ha utilizado una escala Likert validada en constructo y contenido. La muestra es de 1575 participantes (estudiantes universitarios y docentes). Fue realizado un Análisis Factorial Exploratorio para validar la construcción de la escala y una correlación P (Pearson). El modelaje a través de ecuaciones estructurales nos permite algunas conclusiones, entre ellas que las prácticas del profesorado deben tener carácter pluricultural e inclusivo, siendo dos aspectos que influyen en las prácticas, sin que sea relevante su vinculación.