Persona:
Fresno Fernández, Víctor Diego

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0003-4270-2628
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Fresno Fernández
Nombre de pila
Víctor Diego
Nombre

Resultados de la búsqueda

Mostrando 1 - 2 de 2
  • Publicación
    Querying the Depths: Unveiling the Strengths and Struggles of Large Language Models in SPARQL Generation
    (Sociedad Española para el procesamiento del lenguaje natural, 2024-05-15) Ghajari Espinosa, Adrián; Ros Muñoz, Salvador; Pérez Pozo, Álvaro; Fresno Fernández, Víctor Diego; SEPLN, Sociedad Española para el Procesamiento del lenguaje natural
    In the quest to democratize access to databases and knowledge graphs, the ability to express queries in natural language and obtain the requested information becomes paramount, particularly for individuals lacking formal training in query languages. This situation affects SPARQL, the standard for querying ontology-based knowledge graphs, posing a significant barrier to many, hindering their ability to leverage these rich resources for research and analysis. To address this gap, our research delves into harnessing the power of Large Language Models (LLMs) to facilitate the generation of SPARQL queries directly from natural language descriptions. For this purpose, we have explored the most popular prompt engineering techniques, a powerful tool in crafting queries that help generative AI models understand and produce specific or generalized outputs based on the quality of provided prompts, without the need of aditional training. By integrating few-shot learning (FSL), Chain-of-Thought (CoT) reasoning, and Retrieval-Augmented Generation (RAG), we devise prompts that streamline the creation of effective SPARQL queries, facilitating more straightforward access to ontology knowledge graphs. Our analysis involved prompts evaluated across three distinct LLMs: DeepSeek-Code 6.7b, CodeLlama-13b and GPT 3.5 TURBO. The comparative results revealed marginal variations in accuracy among these models, with FSL emerging as the most effective technique. Our results highlight the potential of LLMs to make knowledge graphs more accessible to a broader audience, but also that much more research is needed to get results comparable to human performance.
  • Publicación
    DISCO PAL: Diachronic Spanish sonnet corpus with psychological and affective labels
    (Springer, 2021-10-13) Barbado, Alberto; Fresno Fernández, Víctor Diego; Manjarrés Riesco, Ángeles; Ros Muñoz, Salvador
    Nowadays, there are many applications of text mining over corpora from different languages. However, most of them are based on texts in prose, lacking applications that work with poetry texts. An example of an application of text mining in poetry is the usage of features derived from their individual words in order to capture the lexical, sublexical and interlexical meaning, and infer the General Affective Meaning (GAM) of the text. However, even though this proposal has been proved as useful for poetry in some languages, there is a lack of studies for both Spanish poetry and for highly-structured poetic compositions such as sonnets. This article presents a study over an annotated corpus of Spanish sonnets, in order to analyse if it is possible to build features from their individual words for predicting their GAM. The purpose of this is to model sonnets at an affective level. The article also analyses the relationship between the GAM of the sonnets and the content itself. For this, we consider the content from a psychological perspective, dentifying with tags when a sonnet is related to a specific term. Then, we study how GAM changes according to each of those psychological terms. The corpus used contains 274 Spanish sonnets from authors of different centuries, from fifteenth to nineteenth. This corpus was annotated by different domain experts. The experts annotated the poems with affective and lexico-semantic features, as well as with domain concepts that belong to psychology. Thanks to this, the corpus of sonnets can be used in different applications, such as poetry recommender systems, per- sonality text mining studies of the authors, or the usage of poetry for therapeutic purposes.