Persona:
Bravo Yagüe, Juan Carlos

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0002-9961-4314
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Bravo Yagüe
Nombre de pila
Juan Carlos
Nombre

Resultados de la búsqueda

Mostrando 1 - 10 de 12
  • Publicación
    Effects of UVC irradiation on polystyrene for healthcare packaging: Study by FTIR and Raman spectroscopy with thermoluminescence
    (Elsevier, 2024-02-14) Correcher, V.; García Guinea, Javier; Boronat Castaño, Cecilia; Bravo Yagüe, Juan Carlos
    The interaction between ultraviolet C radiation (UVC) and polystyrene (PS) materials has been investigated, particularly in post-packaging irradiation processes for healthcare applications. Effective UVC penetration through PS materials, regardless of their thickness (0.16 and 0.40 mm) has been observed. However, the penetration effectiveness could be affected by the thickness of the PS material. Achieving optimal post-packaging UVC treatment requires a thorough evaluation of chemical composition and material thickness, especially in pharmaceutical and medical packaging industries. Preliminary results reveal minimal degradation in UVC-irradiated PS packaging samples, as supported by FTIR and Raman spectroscopy characterization. Minor variations could be attributed to intrinsic PS materials properties and/or their respective background, rather than the influence of UVC radiation. Consequently, PS materials exhibit resilience under the experimental conditions following UVC irradiation treatment. Furthermore, a comprehensive analysis of thermoluminescence (TL) emissions evaluates several commercial dosimeter materials for UVC radiation detection. The TLD-100 and TLD-200 dosimeters show potential as UVC detectors, displaying distinct responses linked to the non-ionizing component of UVC radiation at 310 ◦C and in the range of 150–250 ◦ C, respectively. However, the TLD-400 and GR-200 dosimeters are not suitable for UVC detection due to their spread TL emissions considering intensity and curve shape. This UVC-TL analysis consistently detects radiation in the proposed commercial dosimeter materials one-hour post-exposure, providing assurance that healthcare materials have been irradiated. Such analysis enhances reliability during extended UVC exposures, offering valuable insights for industries employing UVC-irradiated materials, particularly in healthcare applications.
  • Publicación
    Assessing matrix solid phase dispersion extraction strategies for determining bisphenols and phthalates in gilthead sea bream samples
    (MDPI, 2024-01) Soliz Rojas, Dulce Lucy; Paniagua González, Gema; Bravo Yagüe, Juan Carlos; Fernández Hernando, Pilar; Garcinuño Martínez, Rosa Mª
    Microplastics (MPs) and nanoplastics (NPs) are widely spread in the environment, generating significant concern due to their potential impact on environmental health. Marine species usually ingest plastic fragments, mistaking them for food. Many toxic compounds, such as plastic additives that are not chemically bound to the plastic matrix, can be released from MPs and NPs and reach humans via the food chain. This paper highlights the development and validation of a straightforward solid–liquid extraction clean-up procedure in combination with a matrix solid-phase dispersion method using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) detection, enabling facile, precise, and reliable identification and quantitation of a total of six bisphenols and phthalates in gilthead sea breams. Under the optimized conditions, the developed method showed good linearity (R2 > 0.993) for all target compounds. The recoveries obtained were between 70 and 92%. The relative standard deviations (RSDs) for reproducibility (inter-day) and repeatability (intra-day) were less than 9% and 10%, respectively. The limit of detection (LOD) and limit of quantification (LOQ) for the target compounds ranged from 0.11 to 0.68 µg/kg and from 0.37 to 2.28 µg/kg, respectively. A new, efficient extraction methodology for the determination of BPA, BPS, BPF, DBP, DEP, and DHEP in gilthead seabream has been optimized and validated.
  • Publicación
    Detecting ultraviolet C radiation under polyethylene terephthalate (PET) packaging by thermoluminescence analysis using commercial dosimeters
    (Elsevier, 2024-03-07) Correcher, V.; Boronat Castaño, Cecilia; Bravo Yagüe, Juan Carlos
    Food irradiation is a proven technology that enhances food quality and safety by removing microorganisms and extending shelf life. Ultraviolet C radiation (UVC) has recently attracted interest due to its potential to inactivate foodborne pathogens. It relies on several advantages; however, there is limited research on its efficacy and safety particularly concerning food packaging materials such as polyethylene terephthalate (PET). This study reports on the effect of UVC radiation on commercial thermoluminescence dosimeters (namely, TLD-100, TLD-200, TLD-400 and GR-200) placed under PET films with different thicknesses (0.10, 0.42, and 0.60 mm). The results indicate the potential use of these materials for the detection of UVC radiation passing through the randomly selected PET samples. Fourier transform infrared spectroscopy assesses potential structural and chemical alterations in the PET induced by UVC exposure.
  • Publicación
    Ultraviolet C radiation on polypropylene: A potential way to reduce plastic pollution
    (Elsevier, 2024) Correcher, Virgilio; Boronat Castaño, Cecilia; Garcia Guinea, Javier; Bravo Yagüe; Bravo Yagüe, Juan Carlos; https://orcid.org/0000-0003-0864-6861; https://orcid.org/0000-0003-1848-3138
    This study investigates the application of ultraviolet C (UVC) radiation to extend the lifetime of healthcare items containing polypropylene (PP), particularly personal protective equipment (PPE). The main objectives involve assessing possible PP damage from UVC exposure and detecting UVC treatment within PP samples. FTIR spectroscopy and Raman spectroscopy reveal slight degradation in UVC-irradiated PP samples, demonstrating resilience post-treatment. Investigations using commercial thermoluminescence dosimeters (TLD-100, TLD-200, TLD-400 and GR-200) positioned under varying thicknesses of PP (0.20 and 0.80 mm) identify TLD-100 as a promising UVC detector. Conversely, TLD-200 and TLD-400 do not prove to be effective detectors, exhibiting similar behavior to the dosimeters without a plastic sample. And GR-200 does not possess the capability to differentiate between ionizing and non-ionizing components of UVC radiation. This research emphasizes the role of UVC to prolong the lifetime of healthcare items containing PP, thus aiding in efforts to reduce plastic pollution
  • Publicación
    Detecting ultraviolet C radiation under polyethylene terephthalate (PET) packaging by thermoluminescence analysis using commercial dosimeters
    (Elsevier, 2024-03-07) Correcher, V.; Boronat Castaño, Cecilia; Bravo Yagüe, Juan Carlos
    Food irradiation is a proven technology that enhances food quality and safety by removing microorganisms and extending shelf life. Ultraviolet C radiation (UVC) has recently attracted interest due to its potential to inactivate foodborne pathogens. It relies on several advantages; however, there is limited research on its efficacy and safety particularly concerning food packaging materials such as polyethylene terephthalate (PET). This study reports on the effect of UVC radiation on commercial thermoluminescence dosimeters (namely, TLD-100, TLD-200, TLD-400 and GR-200) placed under PET films with different thicknesses (0.10, 0.42, and 0.60 mm). The results indicate the potential use of these materials for the detection of UVC radiation passing through the randomly selected PET samples. Fourier transform infrared spectroscopy assesses potential structural and chemical alterations in the PET induced by UVC exposure.
  • Publicación
    Selective extraction of diazepam and its metabolites from urine samples by a molecularly imprinted solid phase extraction (MISPE) method
    (MDPI, 2024-02) Gil Tejedor, Ana María; Bravo Yagüe, Juan Carlos; Paniagua González, Gema; Fernández Hernando, Pilar; Garcinuño Martínez, Rosa Mª
    In this research, a molecularly imprinted polymer (MIP) was synthesized by precipitation polymerization using oxazepam (OZ) as a template molecule and was subsequently applied as a selective sorbent for the extraction of diazepam (DZP) and its metabolites in urine samples using an SPE cartridge. OZ, temazepam (TZ), nordiazepam (NZ) and DZP were analyzed in the final extracts by high-performance liquid chromatography with diode array detection (HPLC-DAD). The SPE extraction steps were optimized, and the evaluation of an imprinting factor was carried out. The selectivity of the method for OZ versus structurally related benzodiazepines (BZDs), such as bromazepam (BRZ), tetrazepam (TTZ) and halazepam (HZ), was investigated. Under the optimum conditions, the proposed methodology provided good linearity in the range of 10–1500 ng/mL, with limit of detection values between 13.5 and 21.1 ng/mL and recovery levels for DZP and its metabolites from 89.0 to 93.9% (RSD ≤ 8%) at a concentration level of 1000 ng/mL. The proposed method exhibited good selectivity, precision and accuracy and was applied to the analysis of urine samples from a real case of DZP intake.
  • Publicación
    Identification and morphological characterization of different types of plastic microparticles
    (Elsevier, 2024-05-15) Soliz Rojas, Dulce Lucy; Paniagua González, Gema; Muñoz Arnanz, Juan; Bravo Yagüe, Juan Carlos; Fernández Hernando, Pilar; Garcinuño Martínez, Rosa Mª
    The knowledge of the polymeric composition of microplastics (MPs) is interesting because offers useful information on the resistance, durability, and degradability of these materials, also allowing progress in the control of this contamination. However, there is currently a lack of reliable standardized methods for the identification, and characterization of the plastic microparticles. This work uses different techniques in a complementary manner for the identification, and characterization of MPs that more frequently are found in the environment. A total of 10 types of plastics were collected (polystyrene (PS), polyethylene terephthalate (PETE), polyethylene (PE), high- and low-density polyethylene (HDPE and LDPE, respectively), polyvinyl chloride (PVC), polypropylene (PP), polytetrafluoroethylene (PTFE), Polyamide (PA, Nylon 6,6) and poly-carbonate (PC)) and their chemical identification were analyzed by reflectance-attenuated infrared (FTIR-ATR). Furthermore, the samples were observed using light microscopy, and scan-ning electron microscopy (SEM). Also, staining with 12 different dyes was performed to improve the identification of microplastics. The results of this study revealed that PETE, PE, HDPE and LDPE, whose SEM images exhibited smoothness and flat uniformity of their surface, were not (or less) susceptible to adsorb staining solutions while PP, PA, PVC, and PTFE, were capable of adsorbing the dye solutions.
  • Publicación
    Thermoluminescence and ATR-FTIR study of UVC-irradiated low-density polyethylene (LDPE) food packaging
    (Elsevier, 2024-12) Boronat Castaño, Cecilia; Correcher, Virgilio; Benavente Cuevas, José Francisco; Bravo Yagüe, Juan Carlos
    This research aims to study the effects of ultraviolet C (UVC) radiation on low-density polyethylene (LDPE) food packaging. Main objectives include evaluating LDPE degradation and detecting UVC radiation using thermoluminescent dosimeters (TLDs) placed under LDPE samples. Results confirm accurate UVC detection after one hour of exposure, providing a useful tool for optimize food treatment procedures. ATR-FTIR spectroscopy analysis revealed subtle alterations (<8 % transmittance relative) in UVC-irradiated LDPE samples, including possible Csingle bondH breakage (2910 and 2848 cm−1) and potential single bondCdouble bondCsingle bond bond vibrations (1470 cm−1), among others. However, observed variations may stem from LDPE properties rather than entirely from UVC radiation. A comparative study of UVC-induced thermoluminescence (TL) emissions provided insights into various TLDs materials. TL kinetic analysis, using computerised glow curve deconvolution (CGCD) method, unveiled trap charge activation due to UVC exposure, including partial ionization, bleaching effect and photo-transfer (PTTL) processes. LDPE samples amplified UVC-TL responses, revealing intensity differences between the TLDs attributed to the PTTL process, accentuated by the lack of an annealing treatment. Additionally, chemical composition of the TL detectors such as, type, concentration, number, oxidation states and ionic radii of their dopants may influence UVC-TL response. Consequently, TL intensity ratios follow as: GR-200 (LiF: Mg, Cu, P) > TLD-100 (LiF: Ti, Mg) > TLD-400 (CaF2: Mn) > TLD-200 (CaF2: Dy). Thus, GR-200 detects ionizing radiation but cannot distinguish between ionizing and non-ionizing UVC radiation, while TLD-100 has limited effectiveness as a UVC radiation detector. In contrast, TLD-400 is suitable for detecting UVC radiation and TLD-200 emerges as the most favorable UVC detector, showing consistent response levels and minimal PTTL effect placed under the LDPE samples without the need of a thermal annealing treatment that makes the TLD-200 to be reusable in a low-cost measurement protocol.
  • Publicación
    Enhancement of a Simple, Economic and Eco-Friendly Analytical Approach for the Extraction and Determination of Endocrine Disruptors from Plastics in Shrimp
    (MDPI, 2024-07-12) Soliz Rojas, Dulce Lucy; García González, Jorge; Paniagua González, Gema; Garcinuño Martínez, Rosa Mª; Bravo Yagüe, Juan Carlos; Fernández Hernando, Pilar
    The economic significance of the shrimp industry relies heavily on the comprehensive utilization of all of the shrimp’s parts. However, this importance is often threatened by common challenges such as disease and pollution, caused by prominent contaminants that are capable of exerting adverse effects either directly as physical pollutants or indirectly through the incorporation of additives or adsorbed chemicals. Among these substances are endocrine disruptors, which pose risks to both wildlife and human populations. In this study, 11 endocrine-disrupting compounds were determined (3 bisphenols, 3 phthalates, 3 pesticides, and 2 nonylphenols) through the development of a cost-effective, greener and cost-friendly method based on solid-phase matrix dispersion (MSPD) with high-performance liquid chromatography coupled with diode array detection (HPLC-DAD). Determinations were performed on different parts of the shrimp: the cephalothorax, abdomen, intestine and shell. Several variables were optimized in the extraction, separation and detection phases, resulting in average recoveries of about 90%. The limit of detection (LOD) varies depending on the analyte and matrix. At concentrations of 1 mg/kg in the cephalothorax+shells and 1.25 mg/kg in the abdomen+intestine, all compounds were detected, except for nonylphenols. The developed method has allowed the simultaneous determination of 11 endocrine disruptors in different parts of the shrimp samples. Furthermore, the MSPD has been demonstrated to be an efficacious, selective, and streamlined sample extraction method, eliminating the necessity for pretreatment steps such as centrifugation and filtration, as well as the use of large volumes of solvents.
  • Publicación
    Comparing the effect of electron beam, beta and ultraviolet C exposure on the luminescence emission of commercial dosimeters
    (Elsevier, 2023-07-05) Correcher, Virgilio; Sarasola Martín, Iciar; García Guinea, Javier; Benavente Cuevas, José Francisco; Boronat Castaño, Cecilia; Bravo Yagüe, Juan Carlos
    This paper reports on the luminescence characterization of TLD-100 (LiF: Ti, Mg), TLD-200 (CaF2: Dy), TLD-400 (CaF2: Mn) and GR-200 (LiF: Mg, Cu, P) dosimeters exposed to electro beam, beta and ultraviolet C radiation -UVC-. All of them show high sensitivity to radiation regardless of whether it is ionizing or partially ionizing radiation based on their luminescence properties (cathodoluminescence -CL- or thermoluminescence -TL-). CL emission differs significantly among them in shape and intensity due to their chemical compositions. LiF samples display three maxima at: (i) 300-450 nm linked to intrinsic and structural defects, (ii) a green waveband probably due to F3+ centres or the presence of hydroxyl groups and (iii) the red-infrared emission band associated with F2 centres. However, CL spectra from the CaF2 dosimeters display meaningful differences due to the dopant. TLD-200 is characterized by an emission with four sharp individual peaks in the green-IR spectral region (due to the Dy3+), whilst TLD-400 exhibits a broad maximum peaked at ̴ 500 nm (linked to the Mn2+). On the other hand, the variation in the TL glow curves allows to discriminate the TLDs exposed to beta and UVC radiation since they give rise to different chemicalphysical processes and that have been studied from the estimation of the kinetic parameters by means of the Computerised Glow Curve Deconvolution (CGCD) method.