Persona:
Sauvan, Patrick

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0002-9128-8817
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Sauvan
Nombre de pila
Patrick
Nombre

Resultados de la búsqueda

Mostrando 1 - 2 de 2
  • Publicación
    Nuclear scoping analysis of ITER bioshield top lid toward its preliminary design review
    (Elsevier, 2023-10-01) Bergman, J.; Loughlin, Martin; Le Tonqueze, Y.; Thompson, M.; Martínez Albertos, Pablo; Sauvan, Patrick; Juárez Mañas, Rafael
    During ITER operations, electronics located in the crane hall, which is above the tokamak, will be exposed to neutron and photon fields from both the plasma and the activated water. To protect the electronics, the implementation of dedicated shielding on the crane hall platform and the bioshield top lid is required. The design demands optimisation attending to constructability, weight limits, and radiation shielding requirements. This work evaluates eight shielding configurations by assessment of the neutron flux and dose accumulated over 4700 h of operation at 500 MW for electronics protection. This corresponds to a neutron wall load of 0.3 MW a/m² as specified in the ITER Project Specification. An intermediate-source approach has been followed with SRC-UNED, considering all relevant radiation sources while minimising the computational time required. Results were presented at the top lid Conceptual Design Review aiming to support decision-making. Further optimisation has since been performed to reach a top lid proposal for its Preliminary Design Review. All outcomes show that radiation levels above the north and south crane hall platforms are compatible with the critical electronics requirements.
  • Publicación
    Development of a methodology to estimate the statistical SDR uncertainty with R2S-UNED
    (ELSEVIER, 2021) Alguacil Orejudo, Javier; Catalán Pérez, Juan Pablo; Sanz Gozalo, Javier; Sauvan, Patrick; https://orcid.org/0000-0002-9128-8817
    The Rigorous-Two-Steps (R2S) is one of the most useful methods to estimate the Shutdown Dose Rate (SDR). The most advanced R2S tools couple neutron and photon transport, which are often simulated using Monte Carlo (MC) codes, through an activation simulation using mesh-based techniques to improve the spatial resolution of the neutron flux and the decay gamma source. One of the problems of the methodology is that the statistical uncertainty of the neutron flux due to the MC method used by the transport codes is not considered by most R2S implementations. Consequently, larger tolerance must be assumed affecting to the design of the nuclear facilities. This article describes a scheme allowing the calculation of the SDR statistical uncertainty without any additional assumptions than those used in the R2S methodology. The approach proposed in this article is suitable for cell- and mesh-based R2S implementations. In this work, the methodology was implemented in the R2S-UNED code. The accurate application of the methodology requires the full the neutron flux uncertainty (covariance matrix) as input data. MCNP was modified to calculate this matrix, although, it cannot be calculated for most of the realistic R2S simulations due to its size. If that is the situation, we propose a guideline to reduce the size of the covariance matrix to be calculated according to its element contribution to the SDR. When this guideline cannot be applied, the methodology still allows calculating the upper and lower SDR uncertainty bounds. In this article, the guideline is applied to the calculation of the SDR uncertainty in the computational benchmark of ITER. In addition, we also study the possible impact of the neutron flux correlation degree on the SDR uncertainty in this benchmark.