Persona: Carmona Suárez, Enrique J.
Cargando...
Dirección de correo electrónico
ORCID
0000-0002-7487-745X
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Carmona Suárez
Nombre de pila
Enrique J.
Nombre
7 resultados
Resultados de la búsqueda
Mostrando 1 - 7 de 7
Publicación A block-based model for monitoring of human activity(Elsevier, 2011-03) Folgado Zuñiga, Encarnación; Rincón Zamorano, Mariano; Bachiller Mayoral, Margarita; Carmona Suárez, Enrique J.The study of human activity is applicable to a large number of science and technology fields, such as surveillance, biomechanics or sports applications. This article presents BB6-HM, a block-based human model for real-time monitoring of a large number of visual events and states related to human activity analysis, which can be used as components of a library to describe more complex activities in such important areas as surveillance, for example, luggage at airports, clients’ behaviour in banks and patients in hospitals. BB6-HM is inspired by the proportionality rules commonly used in Visual Arts, i.e., for dividing the human silhouette into six rectangles of the same height. The major advantage of this proposal is that analysis of the human can be easily broken down into regions, so that we can obtain information of activities. The computational load is very low, so it is possible to define a very fast implementation. Finally, this model has been applied to build classifiers for the detection of primitive events and visual attributes using heuristic rules and machine learning techniques.Publicación Using genetic algorithms to improve the thermodynamic efficiency of gas turbines designed by traditional methods(Elsevier, 2012-11) Chaquet Ulldemolins, José María; Corral, Roque; Carmona Suárez, Enrique J.A method for optimizing the thermodynamic efficiency of aeronautical gas turbines designed by classical methods is presented. This method is based in the transformation of the original constrained optimization problem into a new constrained free optimization problem which is solved by a genetic algorithm. Basically, a set of geometric, aerodynamic and acoustic noise constraints must be fulfilled during the optimization process. As a case study, the thermodynamic efficiency of an already optimized by traditional methods real aeronautical low pressure turbine design of 13 rows has been successfully improved, increasing the turbine efficiency by 0.047% and reducing the total number of airfoils by 1.61%. In addition, experimental evidence of a strong correlation between the total number of airfoils and the turbine efficiency has been observed. This result would allow us to use the total number of airfoils as a cheap substitute of the turbine efficiency for a coarse optimization at the first design steps.Publicación Fast detection of the main anatomical structures in digital retinal images based on intra-and inter-structure relational knowledge(Elsevier, 2017-10) Molina Casado, José María; García Feijoó, Julián; Carmona Suárez, Enrique J.Background and objective: The anatomical structure detection in retinal images is an open problem. However, most of the works in the related literature are oriented to the detection of each structure individually or assume the previous detection of a structure which is used as a reference. The objective of this paper is to obtain simultaneous detection of the main retinal structures (optic disc, macula, network of vessels and vascular bundle) in a fast and robust way. Methods: We propose a new methodology oriented to accomplish the mentioned objective. It consists of two stages. In an initial stage, a set of operators is applied to the retinal image. Each operator uses intra-structure relational knowledge in order to produce a set of candidate blobs that belongs to the desired structure. In a second stage, a set of tuples is created, each of which contains a different combination of the candidate blobs. Next, filtering operators, using inter-structure relational knowledge, are used in order to find the winner tuple. A method using template matching and mathematical morphology is implemented following the proposed methodology. Results: A success is achieved if the distance between the automatically detected blob center and the actual structure center is less than or equal to one optic disc radius. The success rates obtained in the different public databases analyzed were: MESSIDOR (99.33%, 98.58%, 97.92%), DIARETDB1 (96.63%, 100%, 97.75%), DRIONS (100%, n/a, 100%) and ONHSD (100%, 98.85%, 97.70%) for optic disc (OD), macula (M) and vascular bundle (VB), respectively. Finally, the overall success rate obtained in this study for each structure was: 99.26% (OD), 98.69% (M) and 98.95% (VB). The average time of processing per image was 4.16 ± 0.72 s. Conclusions: The main advantage of the use of inter-structure relational knowledge was the reduction of the number of false positives in the detection process. The implemented method is able to simultaneously detect four structures. It is fast, robust and its detection results are competitive in relation to other methods of the recent literature.Publicación Solving differential equations with Fourier series and Evolution Strategies(Elsevier, 2012-09) Chaquet Ulldemolins, José María ; Carmona Suárez, Enrique J.A novel mesh-free approach for solving differential equations based on Evolution Strategies (ESs) is presented. Any structure is assumed in the equations making the process general and suitable for linear and nonlinear ordinary and partial differential equations (ODEs and PDEs), as well as systems of ordinary differential equations (SODEs). Candidate solutions are expressed as partial sums of Fourier series. Taking advantage of the decreasing absolute value of the harmonic coefficients with the harmonic order, several ES steps are performed. Harmonic coefficients are taken into account one by one starting with the lower order ones. Experimental results are reported on several problems extracted from the literature to illustrate the potential of the proposed approach. Two cases (an initial value problem and a boundary condition problem) have been solved using numerical methods and a quantitative comparative is performed. In terms of accuracy and storing requirements the proposed approach outperforms the numerical algorithm.Publicación Automatic design of analog electronic circuits using grammatical evolution(Elsevier, 2018-01) Castejón, Federico; Carmona Suárez, Enrique J.; https://orcid.org/0000-0002-5072-9532A new approach for automatic synthesis of analog electronic circuits based on grammatical evolution is presented. Grammatical evolution is an evolutionary algorithm based on grammar which can generate code in any programming language and uses variable length linear binary strings. The decoding of each chromosome determines which production rules in a Backus-Naur Form grammar definition are used in a genotype-to-phenotype mapping process. In our method, decoding focuses on obtaining circuit netlists. A new grammar for generating such netlists and a variant of the XOSites-based crossover operator are also presented. A post-processing stage is needed to adapt the decoded netlist prior its evaluation using the NGSpice simulator. Our approach was applied to several case studies, comprising a total of seven benchmark circuits. A comparison with previous works in the literature shows that our method produces competitive circuits in relation to the degree of compliance with the output specifications, the number of components and the number of evaluations used in the evolutionary process.Publicación Using covariance matrix adaptation evolution strategies for solving different types of differential equations(Springer, 2019-03-15) Chaquet Ulldemolins, José María; Carmona Suárez, Enrique J.A novel mesh-free heuristic method for solving differential equations is proposed. The new approach can cope with linear, nonlinear, and partial differential equations (DE), and systems of DEs. Candidate solutions are expressed using a linear combination of kernel functions. Thus, the original problem is transformed into an optimization problem that consists in finding the parameters that define each kernel. The new optimization problem is solved applying a Covariance Matrix Adaptation Evolution Strategy. To increase the accuracy of the results, a Downhill Simplex local search is applied to the best solution found by the mentioned evolutionary algorithm. Our method is applied to 32 differential equations extracted from the literature. All problems are successfully solved, achieving competitive accuracy levels when compared to other heuristic methods. A simple comparison with numerical methods is performed using two partial differential equations to show the pros and cons of the proposed algorithm. To verify the potential of this approach with a more practical problem, an electric circuit is analyzed in depth. The method can obtain the dynamic behavior of the circuit in a parametric way, taking into account different component values.Publicación A Survey of Video Datasets for Human Action and Activity Recognition(Elsevier, 2013-06) Chaquet Ulldemolins, José María; Fernández Caballero, Antonio; Carmona Suárez, Enrique J.Vision-based human action and activity recognition has an increasing importance among the computer vision community with applications to visual surveillance, video retrieval and human–computer interaction. In recent years, more and more datasets dedicated to human action and activity recognition have been created. The use of these datasets allows us to compare different recognition systems with the same input data. The survey introduced in this paper tries to cover the lack of a complete description of the most important public datasets for video-based human activity and action recognition and to guide researchers in the election of the most suitable dataset for benchmarking their algorithms.