Persona:
Moreno Álvarez, Sergio

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0002-1858-9920
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Moreno Álvarez
Nombre de pila
Sergio
Nombre

Resultados de la búsqueda

Mostrando 1 - 2 de 2
  • Publicación
    Deep mixed precision for hyperspectral image classification
    (Springer, 2021-02-03) Paoletti, Mercedes Eugenia; X. Tao; Haut, Juan Mario; Moreno Álvarez, Sergio; Plaza, Antonio; https://orcid.org/0000-0003-1030-3729; https://orcid.org/0000-0001-6701-961X; https://orcid.org/0000-0002-9613-1659
    Hyperspectral images (HSIs) record scenes at different wavelength channels, providing detailed spatial and spectral information. How to storage and process this highdimensional data plays a vital role in many practical applications, where classification technologies have emerged as excellent processing tools. However, their high computational complexity and energy requirements bring some challenges. Adopting low-power consumption architectures and deep learning (DL) approaches has to provide acceptable computing capabilities without reducing accuracy demand. However, most DL architectures employ single-precision (FP32) to train models, and some big DL architectures will have a limitation on memory and computation resources. This can negatively affect the network learning process. This letter leads these challenges by using mixed precision into DL architectures for HSI classification to speed up the training process and reduce the memory consumption/access. Proposed models are evaluated on four widely used data sets. Also, low and highpower consumption devices are compared, considering NVIDIA Jetson Xavier and Titan RTX GPUs, to evaluate the proposal viability in on-board processing devices. Obtained results demonstrate the efficiency and effectiveness of these models within HSI classification task for both devices. Source codes: https ://githu b.com/mhaut / CNN-MP-HSI.
  • Publicación
    Distributed Deep Learning for Remote Sensing Data Interpretation
    (IEEE, 2021-03-15) Haut, Juan Mario; Paoletti, Mercedes Eugenia; Moreno Álvarez, Sergio; Plaza, Javier; Rico Gallego, Juan Antonio; Plaza, Antonio; https://orcid.org/0000-0001-6701-961X; https://orcid.org/0000-0003-1030-3729; https://orcid.org/0000-0002-2384-9141; https://orcid.org/0000-0002-4264-7473; https://orcid.org/0000-0002-9613-1659
    As a newly emerging technology, deep learning (DL) is a very promising field in big data applications. Remote sensing often involves huge data volumes obtained daily by numerous in-orbit satellites. This makes it a perfect target area for data-driven applications. Nowadays, technological advances in terms of software and hardware have a noticeable impact on Earth observation applications, more specifically in remote sensing techniques and procedures, allowing for the acquisition of data sets with greater quality at higher acquisition ratios. This results in the collection of huge amounts of remotely sensed data, characterized by their large spatial resolution (in terms of the number of pixels per scene), and very high spectral dimensionality, with hundreds or even thousands of spectral bands. As a result, remote sensing instruments on spaceborne and airborne platforms are now generating data cubes with extremely high dimensionality, imposing several restrictions in terms of both processing runtimes and storage capacity. In this article, we provide a comprehensive review of the state of the art in DL for remote sensing data interpretation, analyzing the strengths and weaknesses of the most widely used techniques in the literature, as well as an exhaustive description of their parallel and distributed implementations (with a particular focus on those conducted using cloud computing systems). We also provide quantitative results, offering an assessment of a DL technique in a specific case study (source code available: https://github.com/mhaut/cloud-dnn-HSI). This article concludes with some remarks and hints about future challenges in the application of DL techniques to distributed remote sensing data interpretation problems. We emphasize the role of the cloud in providing a powerful architecture that is now able to manage vast amounts of remotely sensed data due to its implementation simplicity, low cost, and high efficiency compared to other parallel and distributed architectures, such as grid computing or dedicated clusters.