Persona:
Marín Martín, Marta María

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0003-2686-909X
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Marín Martín
Nombre de pila
Marta María
Nombre

Resultados de la búsqueda

Mostrando 1 - 6 de 6
  • Publicación
    Repairing Hybrid Mg–Al–Mg Components Using Sustainable Cooling Systems
    (MDPI, 2020-01-15) Blanco, David; Paulo Davim, Joao; Rubio Alvir, Eva María; Marín Martín, Marta María
    This paper focused on the maintenance or repair of holes made using hybrid Mg–Al–Mg components by drilling, using two sustainable cooling techniques (dry machining and cold compressed air) and taking surface roughness on the inside of the holes as the response variable. The novelty of the work is in proving that the repair operations of the multi-material components (magnesium–aluminum–magnesium) and the parts made of aluminum and magnesium (separately) but assembled to form a higher component can be done simultaneously, thus reducing the time and cost of the assembly and disassembly of this type of component. The study is based on a design of experiments (DOE) defined as a product of a full factorial 23 and a block of two factors (3 × 2). Based on our findings, we propose that the analyzed operations are feasible under sustainable conditions and, in particular, under dry machining. Also, the results depend on the machining order.
  • Publicación
    Thicknesses/Roughness Relationship in Mg-Al-Mg and Mg-Ti-Mg Hybrid Component Plates for Drilled Aeronautical Lightweight Parts
    (MDPI, 2020-11-19) Blanco, David; Sáenz De Pipaón, José Manuel; Rubio Alvir, Eva María; Marín Martín, Marta María
    Multimaterial hybrid compounds formed from lightweight structural materials have been acquiring great importance in recent years in the aeronautical and automotive sectors, where they are replacing traditional materials to reduce the mass of vehicles; this will enable either an increase in the action ratio or a reduction in the fuel consumption of vehicles and, in short, will lead to savings in transport costs and a reduction in polluting emissions. Besides, the implementation of production and consumption models based on the circular economy is becoming more and more important, where the repair and, for this purpose, the use of recyclable materials, is crucial. In this context, the analysis of a repair process is carried out by re-drilling Mg-Al-Mg multimaterial components using experimental design (DoE) based on Taguchi methodology, an analysis of variance (ANOVA) and descriptive statistics. The study concludes which are the significant factors and interactions of the process, comparing the results with previous similar studies, and establishing bases to determine the optimum thicknesses of hybrid magnesium-based component plates of drilled parts in the aeronautical industry, guaranteeing surface roughness requirements in repair and maintenance operations throughout their lifetime.
  • Publicación
    Thicknesses/Roughness Relationship in Mg-Al-Mg and Mg-Ti-Mg Hybrid Component Plates for Drilled Aeronautical Lightweight Parts
    (MDPI, 2020-11-19) Blanco, David; Rubio Alvir, Eva María; Sáenz de Pipaón, José Manuel; Marín Martín, Marta María; MDPI
    Multimaterial hybrid compounds formed from lightweight structural materials have been acquiring great importance in recent years in the aeronautical and automotive sectors, where they are replacing traditional materials to reduce the mass of vehicles; this will enable either an increase in the action ratio or a reduction in the fuel consumption of vehicles and, in short, will lead to savings in transport costs and a reduction in polluting emissions. Besides, the implementation of production and consumption models based on the circular economy is becoming more and more important, where the repair and, for this purpose, the use of recyclable materials, is crucial. In this context, the analysis of a repair process is carried out by re-drilling Mg-Al-Mg multimaterial components using experimental design (DoE) based on Taguchi methodology, an analysis of variance (ANOVA) and descriptive statistics. The study concludes which are the significant factors and interactions of the process, comparing the results with previous similar studies, and establishing bases to determine the optimum thicknesses of hybrid magnesium-based component plates of drilled parts in the aeronautical industry, guaranteeing surface roughness requirements in repair and maintenance operations throughout their lifetime.
  • Publicación
    Repairing Hybrid Mg–Al–Mg Components Using Sustainable Cooling Systems
    (MDPI, 2020-01-15) Blanco, David; Rubio Alvir, Eva María; Marín Martín, Marta María; Davim, João Paulo; MDPI
    This paper focused on the maintenance or repair of holes made using hybrid Mg–Al–Mg components by drilling, using two sustainable cooling techniques (dry machining and cold compressed air) and taking surface roughness on the inside of the holes as the response variable. The novelty of the work is in proving that the repair operations of the multi-material components (magnesium–aluminum–magnesium) and the parts made of aluminum and magnesium (separately) but assembled to form a higher component can be done simultaneously, thus reducing the time and cost of the assembly and disassembly of this type of component. The study is based on a design of experiments (DOE) defined as a product of a full factorial 23 and a block of two factors (3 2). Based on our findings, we propose that the analyzed operations are feasible under sustainable conditions and, in particular, under dry machining. Also, the results depend on the machining order
  • Publicación
    Evolution and Latest Trends in Cooling and Lubrication Techniques for Sustainable Machining: A Systematic Review
    (MDPI, 2025-02-05) Polo, Samuel; Rubio Alvir, Eva María; Marín Martín, Marta María; Sáenz de Pipaón, José Manuel; MDPI
    This document presents a review on cooling and lubrication methods in machining. A systematic search of information related to these methods was carried out based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology. The importance of the sustainability of machining processes is highlighted, as they represent between 10 and 17% of the total manufacturing cost of the final part and have negative environmental and health impacts. Although dry machining completely eliminates the use of cutting fluids, in many cases it produces unsatisfactory results due to the increase in temperature inside the tool, which requires prior analysis to ensure its viability compared to conventional techniques. On the other hand, semi-dry machining, which significantly reduces the volume of cutting fluids, is a more competitive alternative, with results similar to those of conventional machining. Other sustainable cooling and lubrication methods are also being investigated, such as cryogenic and high-pressure cooling, which offer better machining results than conventional processes. However, they have a high initial cost and further research is needed to integrate them into industry. While the combination of these cooling and lubrication methods could lead to improved results, there is a notable lack of comprehensive studies on the subject.
  • Publicación
    Revisión de la tendencia actual de procesos avanzados de fabricación aplicados al mantenimiento de motores aeronáuticos
    (Universidad Nacional de Educación a Distancia (España), Universidad Politécnica de Madrid. Departamento de Ingeniería Mecánica, 2022) Sáenz De Pipaón, José Manuel; Blanco Gómez, David; Rubio Alvir, Eva María; Marín Martín, Marta María
    Uno de los sectores más exigentes con los materiales utilizados en la fabricación de sus componentes es el sector aeronáutico; siendo los motores una de las partes más difíciles de fabricar y mantener. El diseño de muchas de sus partes se basa ampliamente en consideraciones aerodinámicas para lograr la máxima eficiencia. Por tanto, muchas de estas piezas presentan una gran complejidad de formas y geometrías. Este trabajo presenta una revisión de los principales procesos avanzados de fabricación utilizados en la fabricación y el mantenimiento de motores. Para lograrlo, se seleccionaron para este estudio algunos de los artículos sobre el tema más citados durante la última década y correspondientes al primer y segundo cuartil del Journal Citation Report.