Persona:
Muñoz Domínguez, Marta

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0001-7434-1236
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Muñoz Domínguez
Nombre de pila
Marta
Nombre

Resultados de la búsqueda

Mostrando 1 - 4 de 4
  • Publicación
    Proposal of optimized power cycles for the DEMO power plant (EUROfusion)
    (Elsevier, 2019-11) Sánchez, Consuelo; Rovira de Antonio, Antonio José; Montes Pita, María José; Muñoz Domínguez, Marta
    The objective of this paper is the proposal of two configurations of Rankine cycles different from the standard solution considered for the DEMO 2017 design. The configurations are aimed to maintain as constant as possible the operation at the pulse and dwell modes with minimal fluctuations in the turbine and heat exchangers parameters, in order to maximize the reliability of these components. Each configuration, as well as the reference one, have been simulated both at pulse and dwell operation modes. Compared to the reference design, the proposed configurations are much steadier and mass flow rates in the steam generator and preheaters are constant. In summary, it is possible to ensure a completely steady operation of the whole steam cycle, including all the heat exchangers, without differences between the pulse and dwell modes using two secondary storage tanks additional to the two original molten salt ones.
  • Publicación
    Advanced thermodynamic cycles for finite heat sources: proposals for closed and open heat sources applications
    (Elsevier, 2020) Sánchez, Consuelo; Rovira de Antonio, Antonio José; Muñoz Domínguez, Marta; Barbero Fresno, Rubén
    This paper analyses two non-conventional thermodynamic cycles designed to work with finite heat sources, which are suitable for maximum temperatures of about 400 °C. The Hybrid Rankine-Brayton (HRB) cycle fits well to closed heat sources and, in the paper, it is analysed considering its exergy efficiency and some requirements for the maximum and minimum temperature of the heat transfer fluid that feeds the cycle, obtaining promising results. The other one is a new proposal called Recuperated and Double Expanded (RDE) cycle, aimed to translate the good features of HRB from closed heat sources to open ones, where the performance of HRB is limited. Both cycles are compared to some reference ones. Results show that the HRB cycle is a good candidate for finite closed heat sources, particularly with maximum temperature around 400 °C and with temperature changes of the heat transfer fluid from 100 °C to 150 °C. The RDE cycle exhibits good performance for finite open heat sources with maximum temperatures between 200 °C and 400 °C, and it behaves similarly to tri-lateral cycles.
  • Publicación
    Proposal and analysis of an integrated solar combined cycle with partial recuperation.
    (Elsevier, 2020) Abbas, Rubén; Sánchez, Consuelo; Rovira de Antonio, Antonio José; Muñoz Domínguez, Marta
    The paper analyses an integrated solar combined cycle that, as a novelty, includes a gas turbine with partial recuperation. A conventional solar arrangement including parabolic troughs with a thermal oil is assumed. This field feeds a solar steam generator working in parallel with the high-pressure evaporator of the heat recovery steam generator. The plant is designed to balance out the solar supply to the steam cycle with the thermal power transferred to the air in the recuperator before it is introduced in the combustion chamber. Thus, only a fraction of the turbine exhaust gas flows through the recuperator. The additional steam production due to the solar contribution is mitigated by lower power available at the evaporator of the heat recovery steam generator, making possible to achieve constant steam turbine operation regardless the solar contribution. Results show that the proposal reaches better performance and lower generating cost than conventional integrated solar combined cycles. Besides, a new proposal to evaluate plant performances and economical assessments is introduced, which has been shown useful to understand correctly the results obtained.
  • Publicación
    Comparison of Different Technologies for Integrated Solar Combined Cycles: Analysis of Concentrating Technology and Solar Integration
    (MDPI, 2018-04-25) Sánchez, Consuelo; Abbas, Rubén; Muñoz Antón, Javier; Ortega, Guillermo; Rovira de Antonio, Antonio José; Valdés Fernández, Manuel Tomás; Barbero Fresno, Rubén; Montes Pita, María José; Muñoz Domínguez, Marta; Varela Díez, Fernando
    This paper compares the annual performance of Integrated Solar Combined Cycles (ISCCs) using different solar concentration technologies: parabolic trough collectors (PTC), linear Fresnel reflectors (LFR) and central tower receiver (CT). Each solar technology (i.e. PTC, LFR and CT) is proposed to integrate solar energy into the combined cycle in two different ways. The first one is based on the use of solar energy to evaporate water of the steam cycle by means of direct steam generation (DSG), increasing the steam production of the high pressure level of the steam generator. The other one is based on the use of solar energy to preheat the pressurized air at the exit of the gas turbine compressor before it is introduced in the combustion chamber, reducing the fuel consumption. Results show that ISCC with DSG increases the yearly production while solar air heating reduces it due to the incremental pressure drop. However, air heating allows significantly higher solar-to-electricity efficiencies and lower heat rates. Regarding the solar technologies, PTC provides the best thermal results.