Persona: Plaza Morales, Laura
Cargando...
Dirección de correo electrónico
ORCID
0000-0001-5144-8014
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Plaza Morales
Nombre de pila
Laura
Nombre
2 resultados
Resultados de la búsqueda
Mostrando 1 - 2 de 2
Publicación Automatic Recommendation of Forum Threads and Reinforcement Activities in a Data Structure and Programming Course(MDPI, 2023-09-21) Plaza Morales, Laura; Araujo Serna, M. Lourdes; López Ostenero, Fernando; Martínez Romo, JuanOnline learning is quickly becoming a popular choice instead of traditional education. One of its key advantages lies in the flexibility it offers, allowing individuals to tailor their learning experiences to their unique schedules and commitments. Moreover, online learning enhances accessibility to education, breaking down geographical and economical boundaries. In this study, we propose the use of advanced natural language processing techniques to design and implement a recommender that supports e-learning students by tailoring materials and reinforcement activities to students’ needs. When a student posts a query in the course forum, our recommender system provides links to other discussion threads where related questions have been raised and additional activities to reinforce the study of topics that have been challenging. We have developed a content-based recommender that utilizes an algorithm capable of extracting key phrases, terms, and embeddings that describe the concepts in the student query and those present in other conversations and reinforcement activities with high precision. The recommender considers the similarity of the concepts extracted from the query and those covered in the course discussion forum and the exercise database to recommend the most relevant content for the student. Our results indicate that we can recommend both posts and activities with high precision (above 80%) using key phrases to represent the textual content. The primary contributions of this research are three. Firstly, it centers on a remarkably specialized and novel domain; secondly, it introduces an effective recommendation approach exclusively guided by the student’s query. Thirdly, the recommendations not only provide answers to immediate questions, but also encourage further learning through the recommendation of supplementary activities.Publicación Deep-Learning Approach to Educational Text Mining and Application to the Analysis of Topics’ Difficulty(Institute of Electrical and Electronics Engineers, 2020-12-02) Araujo Serna, M. Lourdes; López Ostenero, Fernando; Martínez Romo, Juan; Plaza Morales, LauraLearning analytics has emerged as a promising tool for optimizing the learning experience and results, especially in online educational environments. An important challenge in this area is identifying the most difficult topics for students in a subject, which is of great use to improve the quality of teaching by devoting more effort to those topics of greater difficulty, assigning them more time, resources and materials. We have approached the problem by means of natural language processing techniques. In particular, we propose a solution based on a deep learning model that automatically extracts the main topics that are covered in educational documents. This model is next applied to the problem of identifying the most difficult topics for students in a subject related to the study of algorithms and data structures in a Computer Science degree. Our results show that our topic identification model presents very high accuracy (around 90 percent) and may be efficiently used in learning analytics applications, such as the identification and understanding of what makes the learning of a subject difficult. An exhaustive analysis of the case study has also revealed that there are indeed topics that are consistently more difficult for most students, and also that the perception of difficulty in students and teachers does not always coincide with the actual difficulty indicated by the data, preventing to pay adequate attention to the most challenging topics.