Persona:
Robles Gómez, Antonio

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0002-5181-0199
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Robles Gómez
Nombre de pila
Antonio
Nombre

Resultados de la búsqueda

Mostrando 1 - 10 de 22
  • Publicación
    Cerebral ischemia detection using Deep Learning techniques
    (Springer, 2025-05-20) Pastor Vargas, Rafael; Antón‑Munárriz, Cristina; Haut, Juan M.; Robles Gómez, Antonio; Paoletti, Mercedes E.; Benítez Andrades, José Alberto; https://orcid.org/0000-0002-4089-9538
    Cerebrovascular accident (CVA), commonly known as stroke, stands as a significant contributor to contemporary mortality and morbidity rates, often leading to lasting disabilities. Early identification is crucial in mitigating its impact and reducing mortality. Non-contrast computed tomography (NCCT) remains the primary diagnostic tool in stroke emergencies due to its speed, accessibility, and cost-effectiveness. NCCT enables the exclusion of hemorrhage and directs attention to ischemic causes resulting from arterial flow obstruction. Quantification of NCCT findings employs the Alberta Stroke Program Early Computed Tomography Score (ASPECTS), which evaluates affected brain structures. This study seeks to identify early alterations in NCCT density in patients with stroke symptoms using a binary classifier distinguishing NCCT scans with and without stroke. To achieve this, various well-known deep learning architectures, namely VGG3D, ResNet3D, and DenseNet3D, validated in the ImageNet challenges, are implemented with 3D images covering the entire brain volume. The training results of these networks are presented, wherein diverse parameters are examined for optimal performance. The DenseNet3D network emerges as the most effective model, attaining a training set accuracy of 98% and a test set accuracy of 95%. The aim is to alert medical professionals to potential stroke cases in their early stages based on NCCT findings displaying altered density patterns.
  • Publicación
    A Cloud Game-based Educative Platform Architecture: the CyberScratch Project
    (MDPI, 2021) Utrilla, Alejandro; Tobarra Abad, María de los Llanos; Robles Gómez, Antonio; Pastor Vargas, Rafael; Hernández Berlinches, Roberto
    The employment of modern technologies is widespread in our society, so the inclusion of practical activities for education has become essential and useful at the same time. These activities are more noticeable in Engineering, in areas such as cybersecurity, data science, artificial intelligence, etc. Additionally, these activities acquire even more relevance with a distance education methodology, as our case is. The inclusion of these practical activities has clear advantages , such as (1) promoting critical thinking and (2) improving students’ abilities and skills for their professional careers. There are several options, such as the use of remote and virtual laboratories, virtual reality and gamebased platforms, among others. This work addresses the development of a new cloud game-based educational platform, which defines a modular and flexible architecture (using light containers). This architecture provides interactive and monitoring services and data storage in a transparent way. The platform uses gamification to integrate the game as part of the instructional process. The CyberScratch project is a particular implementation of this architecture focused on cybersecurity game-based activities. The data privacy management is a critical issue for these kinds of platforms, so the architecture is designed with this feature integrated in the platform components. To achieve this goal, we first focus on all the privacy aspects for the data generated by our cloud game-based platform, by considering the European legal context for data privacy following GDPR and ISO/IEC TR 20748-1:2016 recommendations for Learning Analytics (LA). Our second objective is to provide implementation guidelines for efficient data privacy management for our cloud game-based educative platform. All these contributions are not found in current related works. The CyberScratch project, which was approved by UNED for the year 2020, considers using the xAPI standard for data handling and services for the game editor, game engine and game monitor modules of CyberScratch. Therefore, apart from considering GDPR privacy and LA recommendations, our cloud game-based architecture covers all phases from game creation to the final users’ interactions with the game.
  • Publicación
    Smart Contracts for Managing the Chain-of-Custody of Digital Evidence: A Practical Case of Study
    (MDPI, 2023) Santamaría, Pablo; Tobarra Abad, María de los Llanos; Pastor Vargas, Rafael; Robles Gómez, Antonio
    The digital revolution is renewing many aspects of our lives, which is also a challenge in judicial processes, such as the Chain-of-Custody (CoC) process of any electronic evidence. A CoC management system must be designed to guarantee them to maintain its integrity in court. This issue is essential for digital evidence’s admissibility and probative value. This work has built and validated a real prototype to manage the CoC process of any digital evidence. Our technological solution follows a process model that separates the evidence registry and any evidence itself for scalability purposes. It includes the development of an open-source smart contract under Quorum, a version of Ethereum oriented to private business environments. The significant findings of our analysis have been: (1) Blockchain networks can become a solution, where integrity, privacy and traceability must be guaranteed between untrustworthy parties; and (2) the necessity of promoting the standardization of CoC smart contracts with a secure, simple process logic. Consequently, these contracts should be deployed in consortium environments, where reliable, independent third parties validate the transactions without having to know their content.
  • Publicación
    Researchers’ perceptions of DH trends and topics in the English and Spanish-speaking community. DayofDH data as a case study
    (Jagiellonian University & Pedagogical University (Cracovia), 2016-07-22) González-Blanco García, Elena; Rio Riande, Gimena del; Robles Gómez, Antonio; Ros Muñoz, Salvador; Hernández Berlinches, Roberto; Tobarra Abad, María de los Llanos; Caminero Herráez, Agustín Carlos; Pastor Vargas, Rafael
  • Publicación
    Detection of Cerebral Ischaemia using Transfer Learning Techniques
    (IEEE) Antón Munárriz, Cristina; Haut, Juan M.; Paoletti, Mercedes E.; Benítez Andrades, José Alberto; Pastor Vargas, Rafael; Robles Gómez, Antonio
    Cerebrovascular accident (CVA) or stroke is one of the main causes of mortality and morbidity today, causing permanent disabilities. Its early detection helps reduce its effects and its mortality: time is brain. Currently, non-contrast computed tomography (NCCT) continues to be the first-line diagnostic method in stroke emergencies because it is a fast, available, and cost-effective technique that makes it possible to rule out haemorrhage and focus attention on the ischemic origin, that is, due to obstruction to arterial flow. NCCT are quantified using a scoring system called ASPECTS (Alberta Stroke Program Early Computed Tomography Score) according to the affected brain structures. This paper aims to detect in an initial phase those CTs of patients with stroke symptoms that present early alterations in CT density using a binary classifier of CTs without and with stroke, to alert the doctor of their existence. For this, several well-known neural network architectures are implemented in the ImageNet challenges (VGG, NasNet, ResNet and DenseNet), with 3D images, covering the entire brain volume. The training results of these networks are exposed, in which different parameters are tested to obtain maximum performance, which is achieved with a DenseNet3D network that achieves an accuracy of 98% in the training set and 95% in the test set
  • Publicación
    Internet of Things Remote Laboratory for MQTT remote experimentation
    (Springer Link, 2023) Anhelo, Jesús; Robles Gómez, Antonio; Martín Gutiérrez, Sergio
    Remote laboratories have matured substantially and have seen widespread adoption across universities globally. This paper delineates the design and implementation of a remote laboratory for Industry 4.0, specifically for Internet of Things. It employs Raspberry Pi and ESP8266 microcontrollers, to bolster online Internet of Things (IoT) learning and experimentation platforms. Such platforms hold significant value in delivering high-quality online education programs centered on IoT. Students have access to a web interface where they can write Arduino code to program the behavior of each one of the nodes of an Internet of Things scenario. This setup allows them to remotely program three NodeMCU boards in a manner akin to the usage of the Arduino IDE connected to an Arduino board locally. The system offers the ability to compile and upload code, complete with error notifications. Additionally, it furnishes several functionalities such as the ability to load new local code, save the authored code to one's personal computer, load predefined examples, access a serial monitor, and avail the Node Red platform. This amalgamation of features promises to offer a comprehensive and interactive remote learning experience for students engaging with IoT technologies.
  • Publicación
    EVI-LINHD, a virtual research environment for the Spanish speaking community
    (Oxford University Press, 2017-12) González-Blanco García, Elena; Rio Riande, Gimena del; Díez Platas, María Luisa; Olmo, Álvaro del; Urízar, Miguel; Martínez Cantón, Clara Isabel; Ros Muñoz, Salvador; Pastor Vargas, Rafael; Robles Gómez, Antonio; Caminero Herráez, Agustín Carlos
    Laboratorio de Innovación en Humanidades Digitales (UNED) has developed Entorno Virtual de Investigación del Laboratorio de Innovación en Humanidades Digitales (EVI-LINHD), the first virtual research environment devoted mainly to Spanish speakers interested in digital scholarly edition. EVI-LINHD combines different open-source software for developing a complete digital project: (1) a Webbased application markup tool—TEIscribe—combined with an eXistdb solution and a TEIPublisher platform, (2) Omeka for digital libraries, and (3) WordPress for simple Web pages. All these instances are linked to a local installation of the LINDAT/Common Language Resources and Technology Infrastructure (CLARIN) digital repository. LINDAT/CLARIN allows EVI-LINHD users to have their projects deposited and stored safely. Thanks to this solution, EVI-LINHD projects also improve their visibility. The specific metadata profile used in the repository is based on Dublin Core, and it is enriched with the Spanish translation of DARIAH’s Taxonomy of Digital Research Activities in the Humanities.
  • Publicación
    Machine learning models and dimensionality reduction for improving the Android malware detection
    (PeerJ, 2024-12-23) Moran, Pablo; Robles Gómez, Antonio; Duque Fernández, Andrés; Tobarra Abad, María de los Llanos; Pastor Vargas, Rafael
    Today, a great number of attack opportunities for cybercriminals arise in Android, since it is one of the most used operating systems for many mobile applications. Hence, it is very important to anticipate these situations. To minimize this problem, the analysis of malware search applications is based on machine learning algorithms. Our work uses as a starting point the features proposed by the DREBIN project, which today constitutes a key reference in the literature, being the largest public Android malware dataset with labeled families. The authors only employ the support vector machine to determine whether a sample is malware or not. This work first proposes a new efficient dimensionality reduction of features, as well as the application of several supervised machine learning algorithms for prediction purposes. Predictive models based on Random Forest are found to achieve the most promising results. They can detect an average of 91.72% malware samples, with a very low false positive rate of 0.13%, and using only 5,000 features. This is just over 9% of the total number of features of DREBIN. It achieves an accuracy of 99.52%, a total precision of 96.91%, as well as a macro average F1-score of 96.99%.
  • Publicación
    Easy Development of Industry 4.0 Remote Labs
    (MDPI, 2024) Rejón Gómez, Carlos; Martín Gutiérrez, Sergio; Robles Gómez, Antonio
    Acquiring hands-on skills is nowadays key for Engineers today in the context of Industry 1 4.0. However, it is not always possible to do this in person. Therefore, it is essential to be able to do 2 this from a remote location. To support the development of remote labs for experimentation, this work 3 proposes the development of an open Industry 4.0 remote platform, which can be easily configured 4 and scaled to develop new remote labs for IoT (Internet of Things), cybersecurity, perception systems, 5 robotics, AI (Artificial Intelligence), etc. Over time, these capabilities will enable the development of 6 sustainable Industry 4.0 remote labs. These labs will coexist on the same Industry 4.0 platform, as 7 our proposed Industry 4.0 remote platform is capable of connecting multiple heterogeneous types 8 of devices for remote programming. In this way, it is possible to easily design open remote labs for 9 the digital transition to Industry 4.0 in a standardized way, which is the main research goal of our 10 In4Labs project. Several users are already conducting a series of IoT experiments within our remote 11 Industry 4.0 platform, providing useful recommendations to be included in future versions of the 12 platform.
  • Publicación
    Forensic Analysis Laboratory for Sport Devices: A Practical Case of Use
    (MDPI, 2023) Donaire Calleja, Pablo; Robles Gómez, Antonio; Tobarra Abad, María de los Llanos; Pastor Vargas, Rafael
    At present, the mobile device sector is experiencing significant growth. In particular, wear- 1 able devices have become a common element in society. This fact implies that users unconsciously 2 accept the constant dynamic collection of private data about their habits and behaviours. Therefore, 3 this work focuses on highlighting and analyzing some of the main issues that forensic analysts face 4 in this sector, such as the lack of standard procedures for analysis and the common use of private 5 protocols for data communication. Thus, it is almost impossible for a digital forensic specialist to 6 fully specialize in the context of wearables, such as smartwatches for sports activities. With the aim 7 of highlighting these problems, a complete forensic analysis laboratory for such sports devices is 8 described in this paper. We selected a smartwatch belonging to the Garmin Forerunner Series, due to 9 its great popularity. Through an analysis, its strengths and weaknesses in terms of data protection 10 are described. We also analyze how companies are increasingly taking personal data privacy into 11 consideration, in order to minimize unwanted information leaks. Finally, a set of initial security 12 recommendations for the use of these kinds of devices are provided to the reader.