Persona: Gonzalo Arroyo, Julio Antonio
Cargando...
Dirección de correo electrónico
ORCID
0000-0002-5341-9337
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Gonzalo Arroyo
Nombre de pila
Julio Antonio
Nombre
7 resultados
Resultados de la búsqueda
Mostrando 1 - 7 de 7
Publicación Authority and Priority Signals in Automatic Summary Generation for Online Reputation Management(Wiley, 2021-05-01) Rodríguez Vidal, Javier; Carrillo de Albornoz Cuadrado, Jorge Amando; Gonzalo Arroyo, Julio Antonio; Plaza Morales, LauraOnline reputation management (ORM) comprises the collection of techniques that help monitoring and improving the public image of an entity (companies, products, institutions) on the Internet. The ORM experts try to minimize the negative impact of the information about an entity while maximizing the positive material for being more trustworthy to the customers. Due to the huge amount of information that is published on the Internet every day, there is a need to summarize the entire flow of information to obtain only those data that are relevant to the entities. Traditionally the automatic summarization task in the ORM scenario takes some in-domain signals into account such as popularity, polarity for reputation and novelty but exists other feature to be considered, the authority of the people. This authority depends on the ability to convince others and therefore to influence opinions. In this work, we propose the use of authority signals that measures the influence of a user jointly with (a) priority signals related to the ORM domain and (b) information regarding the different topics that influential people is talking about. Our results indicate that the use of authority signals may significantly improve the quality of the summaries that are automatically generated.Publicación EvALL: Open Access Evaluation for Information Access Systems(Association for Computing Machinery (ACM), 2017) Almagro Cádiz, Mario; Rodríguez Vidal, Javier; Verdejo, Felisa; Amigo Cabrera, Enrique::virtual::2664::600; Carrillo de Albornoz Cuadrado, Jorge Amando::virtual::2665::600; Gonzalo Arroyo, Julio Antonio::virtual::2666::600; Amigo Cabrera, Enrique; Carrillo de Albornoz Cuadrado, Jorge Amando; Gonzalo Arroyo, Julio Antonio; Amigo Cabrera, Enrique; Carrillo de Albornoz Cuadrado, Jorge Amando; Gonzalo Arroyo, Julio Antonio; Amigo Cabrera, Enrique; Carrillo de Albornoz Cuadrado, Jorge Amando; Gonzalo Arroyo, Julio AntonioThe EvALL online evaluation service aims to provide a unified evaluation framework for Information Access systems that makes results completely comparable and publicly available for the whole research community. For researchers working on a given test collection, the framework allows to: (i) evaluate results in a way compliant with measurement theory and with state-of-the-art evaluation practices in the field; (ii) quantitatively and qualitatively compare their results with the state of the art; (iii) provide their results as reusable data to the scientific community; (iv) automatically generate evaluation figures and (low-level) interpretation of the results, both as a pdf report and as a latex source. For researchers running a challenge (a comparative evaluation campaign on shared data), the framework helps them to manage, store and evaluate submissions, and to preserve ground truth and system output data for future use by the research community. EvALL can be tested at http://evall.uned.es.Publicación Automatic Detection of Influencers in Social Networks: Authority versus Domain signals(Wiley, 2019-01-07) Rodríguez Vidal, Javier; Anaya Sánchez, Henry; Gonzalo Arroyo, Julio Antonio; Plaza Morales, LauraGiven the task of finding influencers (opinion makers) for a given domain in a social network, we investigate (a) what is the relative importance of domain and authority signals, (b) what is the most effective way of combining signals (voting, classification, learning to rank, etc.) and how best to model the vocabulary signal, and (c) how large is the gap between supervised and unsupervised methods and what are the practical consequences. Our best results on the RepLab dataset (which improves the state of the art) uses language models to learn the domain-specific vocabulary used by influencers and combines domain and authority models using a Learning to Rank algorithm. Our experiments show that (a) both authority and domain evidence can be trained from the vocabulary of influencers; (b) once the language of influencers is modeled as a likelihood signal, further supervised learning and additional network-based signals only provide marginal improvements; and (c) the availability of training data sets is crucial to obtain competitive results in the task. Our most remarkable finding is that influencers do use a distinctive vocabulary, which is a more reliable signal than nontextual network indicators such as the number of followers, retweets, and so on.Publicación Automatic Generation of Entity-Oriented Summaries for Reputation Management(Springer, 2020-04-01) Rodríguez Vidal, Javier; Verdejo, Julia; Carrillo de Albornoz Cuadrado, Jorge Amando; Amigo Cabrera, Enrique; Plaza Morales, Laura; Gonzalo Arroyo, Julio AntonioProducing online reputation summaries for an entity (company, brand, etc.) is a focused summarization task with a distinctive feature: issues that may affect the reputation of the entity take priority in the summary. In this paper we (i) present a new test collection of manually created (abstractive and extractive) reputation reports which summarize tweet streams for 31 companies in the banking and automobile domains; (ii) propose a novel methodology to evaluate summaries in the context of online reputation monitoring, which profits from an analogy between reputation reports and the problem of diversity in search; and (iii) provide empirical evidence that producing reputation reports is different from a standard summarization problem, and incorporating priority signals is essential to address the task effectively.Publicación Detectando Influencers en Medios Sociales utilizando la información de sus seguidores(Sociedad Española para el Procesamiento del Lenguaje Natural, 2020-03) Rodríguez Vidal, Javier; Gonzalo Arroyo, Julio Antonio; Plaza Morales, LauraDada la tarea de encontrar influencers en un dominio dado (i.e. banking) en una red social, en este artículo investigamos (i) la importancia de caracterizar a los seguidores para la detección automática de influencers; (ii) la manera más efectiva de combinar señales obtenidas de los seguidores y de los perfiles principales para la detección automática de influencers. En este trabajo, hemos modelado el discurso usado por los usuarios en dos dominios, automotive y banking, así como el lenguaje utilizado por los influencers en dichos dominios y por sus seguidores, y utilizamos estos Modelos de Lenguaje para estimar la probabilidad de ser un influencer. Nuestro mayor descubrimiento es que los influencers no sólo dependen de su conocimiento sobre el dominio sino del de sus seguidores; por lo tanto, cuanto mayor conocimiento y número de expertos haya entre sus seguidores, mayor será la probabilidad que el perfil sea de un influencer.Publicación Combining evaluation metrics via the unanimous improvement ratio and its application in weps clustering task(Association for the Advancement of Artificial Intelligence, 2011-12-01) Artiles, Javier; Verdejo, Felisa; Amigo Cabrera, Enrique; Gonzalo Arroyo, Julio AntonioMany Artificial Intelligence tasks cannot be evaluated with a single quality criterion and some sort of weighted combination is needed to provide system rankings. A problem of weighted combination measures is that slight changes in the relative weights may produce substantial changes in the system rankings. This paper introduces the Unanimous Improvement Ratio (UIR), a measure that complements standard metric combination criteria (such as van Rijsbergen's F-measure) and indicates how robust the measured differences are to changes in the relative weights of the individual metrics. UIR is meant to elucidate whether a perceived difference between two systems is an artifact of how individual metrics are weighted. Besides discussing the theoretical foundations of UIR, this paper presents empirical results that confirm the validity and usefulness of the metric for the Text Clustering problem, where there is a tradeoff between precision and recall based metrics and results are particularly sensitive to the weighting scheme used to combine them. Remarkably, our experiments show that UIR can be used as a predictor of how well differences between systems measured on a given test bed will also hold in a different test bed.Publicación A comparison of extrinsic clustering evaluation metrics based on formal constraints(Springer, 2009-05-11) Artiles, Javier; Verdejo, Felisa; Amigo Cabrera, Enrique; Gonzalo Arroyo, Julio AntonioThere is a wide set of evaluation metrics available to compare the quality of text clustering algorithms. In this article, we define a few intuitive formal constraints on such metrics which shed light on which aspects of the quality of a clustering are captured by different metric families. These formal constraints are validated in an experiment involving human assessments, and compared with other constraints proposed in the literature. Our analysis of a wide range of metrics shows that only BCubed satisfies all formal constraints. We also extend the analysis to the problem of overlapping clustering, where items can simultaneously belong to more than one cluster. As Bcubed cannot be directly applied to this task, we propose a modified version of Bcubed that avoids the problems found with other metrics.