Persona: Rodríguez Hakim, Mariana
Cargando...
Dirección de correo electrónico
ORCID
0000-0002-8239-2487
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Rodríguez Hakim
Nombre de pila
Mariana
Nombre
2 resultados
Resultados de la búsqueda
Mostrando 1 - 2 de 2
Publicación Single bubble and drop techniques for characterizing foams and emulsions(Elsevier, 2020-12-01) Chandran Suja, V.; Fuller, G. G.; Rodríguez Hakim, Mariana; Tajuelo Rodríguez, JavierThe physics of foams and emulsions has traditionally been studied using bulk foam/emulsion tests and single film platforms such as the Scheludko cell. Recently there has been a renewed interest in a third class of techniques that we term as single bubble/drop tests, which employ isolated whole bubbles and drops to probe the characteristics of foams and emulsions. Single bubble and drop techniques provide a convenient framework for investigating a number of important characteristics of foams and emulsions, including the rheology, stabilization mechanisms, and rupture dynamics. In this review we provide a comprehensive discussion of the various single bubble/drop platforms and the associated experimental measurement protocols including the construction of coalescence time distributions, visualization of the thin film profiles and characterization of the interfacial rheological properties. Subsequently, we summarize the recent developments in foam and emulsion science with a focus on the results obtained through single bubble/drop techniques. We conclude the review by presenting important venues for future research.Publicación Asphaltene-induced spontaneous emulsification: Effects of interfacial co-adsorption and viscoelasticity(American Institute of Physics, 2020-07-01) Anand, Satyam; Yao, Zhen; Kannan, Aadithya; Fuller, Gerald G.; Rodríguez Hakim, Mariana; Tajuelo Rodríguez, JavierAsphaltenes are a class of high molecular weight aromatic compounds found in crude oil. They adsorb onto toluene-water interfaces and induce a spontaneous emulsification phenomenon, whereby stable water-in-oil emulsions form without the need of an external energy input. This work aims to control and understand the factors affecting spontaneous droplet formation in the presence of asphaltene adsorption. This is particularly useful for crude oil refining, where the presence of a stable emulsion hampers the efficiency of downstream processing operations. We explore the effect of the addition of copolymers designed as crude oil flow improvers as a means to control the extent of emulsion formation. We find that the polymers competitively adsorb onto the toluene-water interface and diminish spontaneous emulsification. We also conduct fluorescence microscopy experiments and measurements of the interfacial energy to determine the mechanism of spontaneous emulsification in asphaltene systems. We conclude that an emulsion forms via the diffusion of molecular water into the oil phase and subsequent binding with asphaltene aggregates, leading to the nucleation of micrometer-sized water droplets. We find that the polymer forms complexes with the dissolved asphaltenes, possibly hampering the ability of diffused water to bind to the asphaltenes and reducing the extent of spontaneous emulsification. Finally, we investigate the role of interfacial shear and dilatational viscoelasticity to better understand which fundamental interfacial properties are important in the emulsification of asphaltene-laden systems. We find that the rate of formation of an interfacial microstructural network is inversely correlated with the extent and rate of spontaneous emulsification.