Persona: Sanz Gozalo, Javier
Cargando...
Dirección de correo electrónico
ORCID
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Sanz Gozalo
Nombre de pila
Javier
Nombre
1 resultados
Resultados de la búsqueda
Mostrando 1 - 1 de 1
Publicación Preliminary nuclear analysis of HYLIFE-III: A thick-liquid-wall chamber for inertial fusion energy(ELSEVIER, 2024-05) Ogando Serrano, Francisco M.; Tobin, Michael T.; Meier, Wayne R.; Farga Niñoles, Gonzalo; Marian, Jaime; Reyes, Susana; Sanz Gozalo, Javier; Galloway, Conner D.This paper provides neutronics analyses of the Xcimer Energy Corporation (XEC) HYLIFE-III Inertial Fusion Energy Power Plant concept. This design is based on the thick-liquid-wall HYLIFE-II reactor, but with much larger fusion yield, due to enhanced driver energy. Although HYLIFE-II neutronics was extensively studied, the differences between the two concepts suggested new analyses are required. Further, computational advances in neutronics calculations also motivate updating results from more than 25 years ago. The neutron spectra emitted from the much larger yield hybrid Inertial Confinement Energy (IFE) target is presented. Selected breeding materials are compared by tritium breeding ratio (TBR), activation, and first wall protection where FLiBe is proposed as the overall best choice. The first wall neutron activation and structural damage, including gas generation in the wall, is presented for various FLiBe protective wet-wall thicknesses. Final optic neutron damage is also examined and results in optics long enough lifespan with moderate annealing temperatures. Some limited comparisons of first wall damage for ICF and Magnetic Confinement Fusion relevant conditions is presented. HYLIFE-III with FLiBe as the breeding material and first wall protection provides a very robust TBR above 1.2.