Persona: Rincón Zamorano, Mariano
Cargando...
Dirección de correo electrónico
ORCID
0000-0002-0138-4662
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Rincón Zamorano
Nombre de pila
Mariano
Nombre
2 resultados
Resultados de la búsqueda
Mostrando 1 - 2 de 2
Publicación An overview of graph databases and their applications in the biomedical domain(Oxford University Press, 2021-05-18) Timón Reina, Santiago; Rincón Zamorano, Mariano; Martínez Tomás, RafaelOver the past couple of decades, the explosion of densely interconnected data has stimulated the research, development and adoption of graph database technologies. From early graph models to more recent native graph databases, the landscape of implementations has evolved to cover enterprise-ready requirements. Because of the interconnected nature of its data, the biomedical domain has been one of the early adopters of graph databases, enabling more natural representation models and better data integration workflows, exploration and analysis facilities. In this work, we survey the literature to explore the evolution, performance and how the most recent graph database solutions are applied in the biomedical domain, compiling a great variety of use cases. With this evidence, we conclude that the available graph database management systems are fit to support data-intensive, integrative applications, targeted at both basic research and exploratory tasks closer to the clinic.Publicación A Knowledge Graph Framework for Dementia Research Data(MDPI, 2023-09-20) Timón Reina, Santiago; Kirsebom, Bjørn-Eivind; Fladby, Tormod; Rincón Zamorano, Mariano; Martínez Tomás, RafaelDementia disease research encompasses diverse data modalities, including advanced imaging, deep phenotyping, and multi-omics analysis. However, integrating these disparate data sources has historically posed a significant challenge, obstructing the unification and comprehensive analysis of collected information. In recent years, knowledge graphs have emerged as a powerful tool to address such integration issues by enabling the consolidation of heterogeneous data sources into a structured, interconnected network of knowledge. In this context, we introduce DemKG, an open-source framework designed to facilitate the construction of a knowledge graph integrating dementia research data, comprising three core components: a KG-builder that integrates diverse domain ontologies and data annotations, an extensions ontology providing necessary terms tailored for dementia research, and a versatile transformation module for incorporating study data. In contrast with other current solutions, our framework provides a stable foundation by leveraging established ontologies and community standards and simplifies study data integration while delivering solid ontology design patterns, broadening its usability. Furthermore, the modular approach of its components enhances flexibility and scalability. We showcase how DemKG might aid and improve multi-modal data investigations through a series of proof-of-concept scenarios focused on relevant Alzheimer’s disease biomarkers.