Examinando por Autor "Springer Nature"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Publicación Behavioural and biochemical alterations by chlorpyrifos in aquatic insects: an emerging environmental concern for pristine Alpine habitats(Springer Nature, 2019-10-19) Di Nica, Valeria; Muñiz González, Ana Belén; Lencioni, Valeria; Villa, Sara; Springer Nature; https://orcid.org/0000-0002-4341-9923This study aimed to assess how different concentrations of the insecticide chlorpyrifos (1.1, 5.24, 11, 52.4, 110, 262, 524 and 1100 ng L−1 ) affect the swimming behaviour of Diamesa zernyi larvae following exposure. A video tracking system was employed to analyse two swimming traits (total distance moved and average speed) of the larvae simultaneously after 3 days of exposure to the pesticide at 2 °C. The behavioural results were also interpreted according to biochemical responses to oxidative stress (OS) induced by chlorpyrifos, based on malondialdehyde (MDA) and protein carbonyl (PCC) content. Both distance and speed significantly decreased after 72 h of exposure to chlorpyrifos concentrations of ≥ 110 ng L−1 , under which significant OS was detected as lipid peroxidation (level of MDA) and protein carbonylation (level of carbonyl). Analysis of altered swimming behaviour, along with MDA and carbonyl content, indicated that ≥ 110 ng L−1 contamination levels of the insecticide cause the organism to reallocate energy normally used for locomotor activity to repair cell damage, which might explain the strong impairment to locomotor performance. Locomotor performance is an ecologically relevant trait for elucidating the population dynamics of key species, with disturbance to this trait having long-term negative impacts on population and community structure. Therefore, chlorpyrifos insecticides represent a serious ecological risk for mountain aquatic species based on the detrimental effects observed in the current study, as the tested concentrations were those at which the insecticide is found in many Alpine rivers of Italy.Publicación Effects of single exposure and binary mixtures of ultraviolet filters octocrylene and 2-ethylhexyl 4-(dimethylamino) benzoate on gene expression in the freshwater insect Chironomus riparius(Springer Nature, 2018-10-22) Muñiz González, Ana Belén; Martínez Guitarte, José Luis; Springer NatureUltraviolet filters are used extensively in the production of many personal care and industrial products. These products can inadvertently pollute the environment through recreational activities. They have been associated with endocrine disruption in vertebrates but their effects in invertebrates are poorly understood. Chironomus riparius is a species of the dipteran order, with aquatic larvae that are frequently used in toxicity tests. Previously, we showed that octocrylene (OC) and 2-ethylhexyl 4-(dimethylamino) benzoate (ODPABA) differentially affected the mRNA levels of the ecdysone receptor and Hsp70 genes. For a better understanding of their mode of action, transcriptional activity by real-time PCR was analyzed in fourth instar larvae exposed to OC, OD-PABA, or a binary mixture of both. We studied 16 genes related to the endocrine system, stress, the immune system, and biotransformation mechanisms to elucidate the putative interactions between these compounds. No response was observed for the genes involved in biotransformation, suggesting that enzymes other than cytochromes P450 and glutathione-S-transferases (GSTs) could get involved in transformation of these compounds. Similarly, no response was observed for endocrine-related genes while the stress gene HYOU1 was inhibited by ODPABA, suggesting an effect in response to hypoxia. In addition, no significant interactions were observed following exposure to a binary mixture of these compounds. Overall, the results suggest a weak, acute response in different metabolic pathways and a lack of interaction between the compounds. Finally, new genes are identified in this organism, opening the possibility to analyze new cellular pathways as targets of toxicants.Publicación Endosulfan exposure alters transcription of genes involved in the detoxification and stress responses in Physella acuta(Springer Nature, 2020) Alonso Trujillo, María; Muñiz González, Ana Belén; Martínez Guitarte, José Luis; Springer NatureEndosulfan is a persistent pesticide that has been in use for more than five decades. During this time, it has contaminated soil, air, and water reservoirs worldwide. It is extremely toxic and harmful to beneficial non-target invertebrates, aquatic life, and even humans upon consumption, which is one of the many dangers of this pesticide since it biomagnifies in the food chain. The effects of three endosulfan concentrations (1, 10, and 100 μg/L) on the freshwater snail Physella acuta, an invasive cosmopolitan species, were examined over a week-long exposure period. Alterations in the expression of ten genes related to stress and xenobiotic detoxification were measured against the endogenous controls rpL10 and GAPDH by Real-Time polymerase chain reaction. Four genes are described here for the first time in this species, namely Hsp60, Grp78, GSTk1, and GSTm1. The rest of genes were Hsp90, sHsp16.6, cyp2u1, cyp3a7, cyp4f22, and MRP1. cyp2u1, sHsp16.6, and Grp78 expression were all altered by endosulfan. These results suggest a low pesticide concentration activates the acute response in P. acuta by affecting detoxification and stress responses and alter endoplasmic reticulum function and lipid metabolism. Furthermore, the newly identified genes extend the number of processes and cellular locations that can be analyzed in this organism.