Logotipo del repositorio
  • English
  • Español
  • Français
  • Iniciar sesión
    Identificación habilitada exclusivamente para personal de Biblioteca.
    ¿Has olvidado tu contraseña?
Logotipo del repositorio
  • Colecciones
  • Filtrar búsqueda
  • Depositar
  • English
  • Español
  • Français
  • Iniciar sesión
    Identificación habilitada exclusivamente para personal de Biblioteca.
    ¿Has olvidado tu contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Sevilla-Llewellyn-Jones, Julia"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Publicación
    Detecting Signs of Non-suicidal Self-Injury in Psychiatric Medical Reports Using Language Analysis
    (Sociedad Española para el Procesamiento del Lenguaje Natural, 2022) Reneses, Blanca; Sevilla-Llewellyn-Jones, Julia; Martínez-Capella, Ignacio; Seara-Aguilar, Germán; Martínez Romo, Juan; Araujo Serna, M. Lourdes
    La autolesión no suicida, a menudo denominada autolesión, es el acto de dañarse deliberadamente el propio cuerpo, como cortarse o quemarse. Normalmente, no pretende ser un intento de suicidio. En este trabajo se presenta un sistema de detección de indicios de autolesiones no suicidas, basado en el análisis del lenguaje, sobre un conjunto anotado de informes médicos obtenidos del servicio de psiquiatría de un Hospital público madrileño. Tanto la explicabilidad como la precisión a la hora de predecir los casos positivos, son los dos principales objetivos de este trabajo. Para lograr este fin se han desarrollado dos sistemas supervisados de diferente naturaleza. Por un lado se ha llevado a cabo un proceso de extracción de diferentes rasgos centrados en el propio mundo de las autolesiones mediante técnicas de procesamiento del lenguaje natural para alimentar posteriormente un clasificador tradicional. Por otro lado, se ha implementado un sistema de aprendizaje profundo basado en varias capas de redes neuronales convolucionales, debido a su gran desempeño en tareas de clasificación de textos. El resultado es el funcionamiento de dos sistemas supervisados con un gran rendimiento, en donde destacamos el sistema basado en un clasificador tradicional debido a su mejor predicción de clases positivas y la mayor facilidad de cara a explicar sus resultados a los profesionales sanitarios.
Enlaces de interés

Aviso legal

Política de privacidad

Política de cookies

Reclamaciones, sugerencias y felicitaciones

Recursos adicionales

Biblioteca UNED

Depósito de datos de investigación

Portal de investigación UNED

InvestigaUNED

Contacto

Teléfono: 913986562 / 6643 / 6633 / 8766

Correo: repositoriobiblioteca@adm.uned.es