Logotipo del repositorio
  • English
  • Español
  • Français
  • Iniciar sesión
    Identificación habilitada exclusivamente para personal de Biblioteca.
    ¿Has olvidado tu contraseña?
Logotipo del repositorio
  • Colecciones
  • Filtrar búsqueda
  • Depositar
  • English
  • Español
  • Français
  • Iniciar sesión
    Identificación habilitada exclusivamente para personal de Biblioteca.
    ¿Has olvidado tu contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Javier Diez, Francisco"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Publicación
    Analysis of ultrasound images and clinical data in two clinical scenarios: prediction of failure of induction of labor and risk of preterm delivery
    (Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Inteligencia Artificial, 2019-09-26) García Ocaña, María Inmaculada; Javier Diez, Francisco; López-Linares Román, Karen
    This work explores the use of radiomics and machine learning to extract relevant biomarkers from ultrasound (US) images that can be used in obstetric practice. Two clinical applications are studied: the prediction of induction of labor (IOL) failure based on clinical data and US images obtained prior to IOL, and the estimation of risk of preterm birth based on routinely US images acquired in the 20th week of pregnancy. Several machine learning classifiers and feature selection techniques are tested and the results are compared. The best model for the prediction of IOL failure was a random forest that model obtained an AUC of 0.75, with 69% sensitivity and 71% specificity. The best model for the prediction of preterm birth was a random forest that obtained an AUC of 0.77 AUC, with 71% sensitivity and 69% specificity . These preliminary results suggest that features obtained from US images can be used to estimate risks in these two obstetric problems. Transvaginal US is cheap, widely available at hospitals, and performed routinely. Therefore these method can be easily implemented in clinical practice and help practitioners choose a most personalized treatment for each patient, improving the outcomes. Further validation with a largest and more diverse dataset is needed, especially to assess how the image analysis methods work with images from different US vendors.
Enlaces de interés

Aviso legal

Política de privacidad

Política de cookies

Reclamaciones, sugerencias y felicitaciones

Recursos adicionales

Biblioteca UNED

Depósito de datos de investigación

Portal de investigación UNED

InvestigaUNED

Contacto

Teléfono: 913986562 / 6643 / 6633 / 8766

Correo: repositoriobiblioteca@adm.uned.es