Examinando por Autor "Fabregat Marcos, Hermenegildo"
Mostrando 1 - 5 de 5
Resultados por página
Opciones de ordenación
Publicación A keyphrase-based approach for interpretable ICD-10 code classification of Spanish medical reports(Elsevier, 2021) Fabregat Marcos, Hermenegildo; Duque Fernández, Andrés; Araujo Serna, M. Lourdes; Martínez Romo, JuanBackground and objectives: The 10th version of International Classification of Diseases (ICD-10) codification system has been widely adopted by the health systems of many countries, including Spain. However, manual code assignment of Electronic Health Records (EHR) is a complex and time-consuming task that requires a great amount of specialised human resources. Therefore, several machine learning approaches are being proposed to assist in the assignment task. In this work we present an alternative system for automatically recommending ICD-10 codes to be assigned to EHRs. Methods: Our proposal is based on characterising ICD-10 codes by a set of keyphrases that represent them. These keyphrases do not only include those that have literally appeared in some EHR with the considered ICD-10 codes assigned, but also others that have been obtained by a statistical process able to capture expressions that have led the annotators to assign the code. Results: The result is an information model that allows to efficiently recommend codes to a new EHR based on their textual content. We explore an approach that proves to be competitive with other state-of-the-art approaches and can be combined with them to optimise results. Conclusions: In addition to its effectiveness, the recommendations of this method are easily interpretable since the phrases in an EHR leading to recommend an ICD-10 code are known. Moreover, the keyphrases associated with each ICD-10 code can be a valuable additional source of information for other approaches, such as machine learning techniques.Publicación Biomedical Information Extraction: Exploring new entities and relationships(Universidad Nacional de Educación a Distancia (España). Escuela Internacional de Doctorado. Programa de Doctorado en Sistemas Inteligentes, 2021) Fabregat Marcos, Hermenegildo; Araujo Serna, M. Lourdes ; Martínez Romo, JuanEn la actualidad, los diferentes procesos de digitalización y difusión de información en los que está inmersa la sociedad han dado lugar a un incremento de la información disponible, sobre todo en el dominio biomédico. Debido al esfuerzo requerido para procesar tales cantidades de información, una línea de investigación notablemente activa en la última década es la exploración de técnicas de procesamiento de lenguaje natural y aprendizaje automático para la extracción de información de documentos no estructurados. Estas técnicas están suponiendo grandes hitos en el dominio biomédico, en especial en algunas tareas de extracción de información como el reconocimiento de entidades nombradas y la extracción de relaciones. En esta tesis presentamos una investigación centrada en el análisis automático de documentos de este dominio, profundizando en el procesamiento de documentos acerca de discapacidades y limitaciones funcionales. Este tipo de patologías tienen un alto impacto social ya que afectan al día a día de una gran parte de la población, conllevando en algunos casos serios impedimentos sobre la autonomía de las personas afectadas. Además, muchas enfermedades raras tienen asociadas diversas discapacidades, por lo que frecuentemente se usan para caracterizarlas y pueden ser rasgos de gran utilidad en el diagnóstico de estas enfermedades, para las que por su naturaleza se suele contar con poca información. El objetivo principal de esta tesis es la exploración de documentos del dominio biomédico para el reconocimiento de menciones a discapacidades y la identificación de sus relaciones con enfermedades raras. La detección de estas entidades presenta dificultades específicas, que van desde la falta de concreciones formales para la definición de discapacidad, hasta la necesidad de considerar el gran número de formas diferentes de expresar una misma discapacidad. Con el fin de abordar este objetivo, resultó necesaria la recolección y anotación de diferentes colecciones de datos, incluyendo documentos en diferentes idiomas. Tras la generación de las diferentes colecciones de datos, proseguimos con la exploración de sistemas de reconocimiento de entidades para la identificación de menciones a enfermedades raras y discapacidades, y con el estudio de sistemas para la extracción de relaciones entre discapacidades y enfermedades raras. Profundizando en el análisis de este tipo de entidades, extendimos la exploración de las dificultades para la generación de sistemas automáticos orientados al reconocimiento de discapacidades mediante la proposición de una tarea de evaluación. Las diferentes lecciones aprendidas durante la tarea de evaluación propuesta nos sirvieron para el desarrollo y refinamiento de un sistema automático basado en deep learning para el reconocimiento de discapacidades. El sistema desarrollado se basó en el uso mixto de diferentes tipos de redes recurrentes y planteó mejoras sobre sistemas actuales del estado del arte. Al mismo tiempo, este sistema nos sirvió de base para la exploración de sistemas de reconocimiento de entidades y extracción de relaciones de forma conjunta. El estudio de la sinergia existente entre ambas tareas supuso la obtención de mejoras significativas. Por ultimo y con el objetivo de explorar los efectos de la negación sobre sistemas de extracción de información, analizamos el rendimiento de enfoques para el procesamiento automático de la negación en documentos en español e inglés. Durante este análisis comprobamos el rendimiento de diferentes propuestas basadas en deep learning para la detección de disparadores de negación y sus alcances, obteniendo mejoras sobre propuestas del estado del arte para el procesamiento de documentos en español. Los resultados obtenidos durante el procesamiento de la negación supusieron además interesantes mejoras en la extracción de relaciones y en el reconocimiento de entidades.Publicación Experimentación basada en deep learning para el reconocimiento del alcance y disparadores de la negación(Sociedad Española para el Procesamiento del Lenguaje Natural, 2019) Fabregat Marcos, Hermenegildo; Araujo Serna, M. Lourdes; Martínez Romo, JuanLa detección automática de los distintos elementos de la negación es un frecuente tema de estudio debido a su alto impacto en diversas tareas de procesamiento de lenguaje natural. Este articulo presenta un sistema basado en deep learning y de arquitectura no dependiente del idioma para la detección automática tanto de disparadores como del alcance de la negación para inglés y español. El sistema presentado obtiene para ingles resultados comparables a los obtenidos en recientes trabajos por sistemas más complejos. Para español destacan los resultados obtenidos en la detección de claves de negación. Por último, los resultados para el reconocimiento del alcance de la negación, son similares a los obtenidos en inglés.Publicación Negation-based transfer learning for improving biomedical Named Entity Recognition and Relation Extraction(Elsevier, 2023-02) Fabregat Marcos, Hermenegildo; Duque Fernández, Andrés; Martínez Romo, Juan; Araujo Serna, M. LourdesBackground and Objectives: Named Entity Recognition (NER) and Relation Extraction (RE) are two of the most studied tasks in biomedical Natural Language Processing (NLP). The detection of specific terms and entities and the relationships between them are key aspects for the development of more complex automatic systems in the biomedical field. In this work, we explore transfer learning techniques for incorporating information about negation into systems performing NER and RE. The main purpose of this research is to analyse to what extent the successful detection of negated entities in separate tasks helps in the detection of biomedical entities and their relationships. Methods: Three neural architectures are proposed in this work, all of them mainly based on Bidirectional Long Short-Term Memory (Bi-LSTM) networks and Conditional Random Fields (CRFs). While the first architecture is devoted to detecting triggers and scopes of negated entities in any domain, two specific models are developed for performing isolated NER tasks and joint NER and RE tasks in the biomedical domain. Then, weights related to negation detection learned by the first architecture are incorporated into those last models. Two different languages, Spanish and English, are taken into account in the experiments. Results: Performance of the biomedical models is analysed both when the weights of the neural networks are randomly initialized, and when weights from the negation detection model are incorporated into them. Improvements of around 3.5% of F-Measure in the English language and more than 7% in the Spanish language are achieved in the NER task, while the NER+RE task increases F-Measure scores by more than 13% for the NER submodel and around 2% for the RE submodel. Conclusions: The obtained results allow us to conclude that negation-based transfer learning techniques are appropriate for performing biomedical NER and RE tasks. These results highlight the importance of detecting negation for improving the identification of biomedical entities and their relationships. The explored echniques show robustness by maintaining consistent results and improvements across different tasks and languages.Publicación Understanding and Improving Disability Identification in Medical Documents(IEEE, 2020) Fabregat Marcos, Hermenegildo; Martínez Romo, Juan; Araujo Serna, M. LourdesDisabilities are a problem that affects a large number of people in the world. Gathering information about them is crucial to improve the daily life of the people who suffer from them but, since disabilities are often strongly associated with different types of diseases, the available data are widely dispersed. In this work we review existing proposal for the problem, making an in-depth analysis, and from it we make a proposal that improves the results of previous systems. The analysis focuses on the results of the participants in DIANN shared task was proposed (IberEval 2018), devoted to the detection of named disabilities in electronic documents. In order to evaluate the proposed systems using a common evaluation framework, a corpus of documents, in both English and Spanish, was gathered and annotated. Several teams participated in the task, either using classic methods or proposing specific approaches to deal effectively with the complexities of the task. Our aim is to provide insight for future advances in the field by analyzing the participating systems and identifying the most effective approaches and elements to tackle the problem. We have validated the lessons learned from this analysis through a new proposal that includes the most promising elements used by the participating teams. The proposed system improves, for both languages, the results obtained during the task.