Examinando por Autor "Carmona, Enrique J."
Mostrando 1 - 15 de 15
Resultados por página
Opciones de ordenación
Publicación A block-based model for monitoring of human activity(Elsevier, 2011-03) Folgado Zuñiga, Encarnación; Carmona, Enrique J.; Rincón Zamorano, Mariano; Bachiller Mayoral, MargaritaThe study of human activity is applicable to a large number of science and technology fields, such as surveillance, biomechanics or sports applications. This article presents BB6-HM, a block-based human model for real-time monitoring of a large number of visual events and states related to human activity analysis, which can be used as components of a library to describe more complex activities in such important areas as surveillance, for example, luggage at airports, clients’ behaviour in banks and patients in hospitals. BB6-HM is inspired by the proportionality rules commonly used in Visual Arts, i.e., for dividing the human silhouette into six rectangles of the same height. The major advantage of this proposal is that analysis of the human can be easily broken down into regions, so that we can obtain information of activities. The computational load is very low, so it is possible to define a very fast implementation. Finally, this model has been applied to build classifiers for the detection of primitive events and visual attributes using heuristic rules and machine learning techniques.Publicación A new video segmentation method of moving objects based on blob-level knowledge(Elsevier, 2008-02-01) Carmona, Enrique J.; Martínez Campos, Javier; Mira Mira, JoséVariants of the background subtraction method are broadly used for the detection of moving objects in video sequences in different applications. In this work we propose a new approach to the background subtraction method which operates in the colour space and manages the colour information in the segmentation process to detect and eliminate noise. This new method is combined with blob-level knowledge associated with different types of blobs that may appear in the foreground. The idea is to process each pixel differently according to the category to which it belongs: real moving objects, shadows, ghosts, reflections, fluctuation or background noise. Thus, the foreground resulting from processing each image frame is refined selectively, applying at each instant the appropriate operator according to the type of noise blob we wish to eliminate. The approach proposed is adaptive, because it allows both the background model and threshold model to be updated. On the one hand, the results obtained confirm the robustness of the method proposed in a wide range of different sequences and, on the other hand, these results underline the importance of handling three colour components in the segmentation process rather than just the one grey-level component.Publicación A Survey of Video Datasets for Human Action and Activity Recognition(Elsevier, 2013-06) Chaquet, José M.; Carmona, Enrique J.; Fernández Caballero, AntonioVision-based human action and activity recognition has an increasing importance among the computer vision community with applications to visual surveillance, video retrieval and human–computer interaction. In recent years, more and more datasets dedicated to human action and activity recognition have been created. The use of these datasets allows us to compare different recognition systems with the same input data. The survey introduced in this paper tries to cover the lack of a complete description of the most important public datasets for video-based human activity and action recognition and to guide researchers in the election of the most suitable dataset for benchmarking their algorithms.Publicación Automatic design of analog electronic circuits using grammatical evolution(Elsevier, 2018-01) Castejón, Federico; Carmona, Enrique J.A new approach for automatic synthesis of analog electronic circuits based on grammatical evolution is presented. Grammatical evolution is an evolutionary algorithm based on grammar which can generate code in any programming language and uses variable length linear binary strings. The decoding of each chromosome determines which production rules in a Backus-Naur Form grammar definition are used in a genotype-to-phenotype mapping process. In our method, decoding focuses on obtaining circuit netlists. A new grammar for generating such netlists and a variant of the XOSites-based crossover operator are also presented. A post-processing stage is needed to adapt the decoded netlist prior its evaluation using the NGSpice simulator. Our approach was applied to several case studies, comprising a total of seven benchmark circuits. A comparison with previous works in the literature shows that our method produces competitive circuits in relation to the degree of compliance with the output specifications, the number of components and the number of evaluations used in the evolutionary process.Publicación Deformable registration of multimodal retinal images using a weakly supervised deep learning approach(Springer, 2023-03-28) Martínez Río, Javier; Carmona, Enrique J.; Cancelas, Daniel; Novo, Jorge; Ortega, MarcosThere are different retinal vascular imaging modalities widely used in clinical practice to diagnose different retinal pathologies. The joint analysis of these multimodal images is of increasing interest since each of them provides common and complementary visual information. However, if we want to facilitate the comparison of two images, obtained with different techniques and containing the same retinal region of interest, it will be necessary to make a previous registration of both images. Here, we present a weakly supervised deep learning methodology for robust deformable registration of multimodal retinal images, which is applied to implement a method for the registration of fluorescein angiography (FA) and optical coherence tomography angiography (OCTA) images. This methodology is strongly inspired by VoxelMorph, a general unsupervised deep learning framework of the state of the art for deformable registration of unimodal medical images. The method was evaluated in a public dataset with 172 pairs of FA and superficial plexus OCTA images. The degree of alignment of the common information (blood vessels) and preservation of the non-common information (image background) in the transformed image were measured using the Dice coefficient (DC) and zero-normalized cross-correlation (ZNCC), respectively. The average values of the mentioned metrics, including the standard deviations, were DC = 0.72 ± 0.10 and ZNCC = 0.82 ± 0.04. The time required to obtain each pair of registered images was 0.12 s. These results outperform rigid and deformable registration methods with which our method was compared.Publicación Fast detection of the main anatomical structures in digital retinal images based on intra-and inter-structure relational knowledge(Elsevier, 2017-10) Molina Casado, José María; Carmona, Enrique J.; García Feijoó, JuliánBackground and objective: The anatomical structure detection in retinal images is an open problem. However, most of the works in the related literature are oriented to the detection of each structure individually or assume the previous detection of a structure which is used as a reference. The objective of this paper is to obtain simultaneous detection of the main retinal structures (optic disc, macula, network of vessels and vascular bundle) in a fast and robust way. Methods: We propose a new methodology oriented to accomplish the mentioned objective. It consists of two stages. In an initial stage, a set of operators is applied to the retinal image. Each operator uses intra-structure relational knowledge in order to produce a set of candidate blobs that belongs to the desired structure. In a second stage, a set of tuples is created, each of which contains a different combination of the candidate blobs. Next, filtering operators, using inter-structure relational knowledge, are used in order to find the winner tuple. A method using template matching and mathematical morphology is implemented following the proposed methodology. Results: A success is achieved if the distance between the automatically detected blob center and the actual structure center is less than or equal to one optic disc radius. The success rates obtained in the different public databases analyzed were: MESSIDOR (99.33%, 98.58%, 97.92%), DIARETDB1 (96.63%, 100%, 97.75%), DRIONS (100%, n/a, 100%) and ONHSD (100%, 98.85%, 97.70%) for optic disc (OD), macula (M) and vascular bundle (VB), respectively. Finally, the overall success rate obtained in this study for each structure was: 99.26% (OD), 98.69% (M) and 98.95% (VB). The average time of processing per image was 4.16 ± 0.72 s. Conclusions: The main advantage of the use of inter-structure relational knowledge was the reduction of the number of false positives in the detection process. The implemented method is able to simultaneously detect four structures. It is fast, robust and its detection results are competitive in relation to other methods of the recent literature.Publicación Identification of the optic nerve head with genetic algorithms(Elsevier, 2008-07) Carmona, Enrique J.; García Feijoó, Julián; Martínez de la Casa, José M.; Rincón Zamorano, MarianoObjective This work proposes creating an automatic system to locate and segment the optic nerve head (ONH) in eye fundus photographic images using genetic algorithms. Methods and material Domain knowledge is used to create a set of heuristics that guide the various steps involved in the process. Initially, using an eye fundus colour image as input, a set of hypothesis points was obtained that exhibited geometric properties and intensity levels similar to the ONH contour pixels. Next, a genetic algorithm was used to find an ellipse containing the maximum number of hypothesis points in an offset of its perimeter, considering some constraints. The ellipse thus obtained is the approximation to the ONH. The segmentation method is tested in a sample of 110 eye fundus images, belonging to 55 patients with glaucoma (23.1%) and eye hypertension (76.9%) and random selected from an eye fundus image base belonging to the Ophthalmology Service at Miguel Servet Hospital, Saragossa (Spain). Results and conclusions The results obtained are competitive with those in the literature. The method's generalization capability is reinforced when it is applied to a different image base from the one used in our study and a discrepancy curve is obtained very similar to the one obtained in our image base. In addition, the robustness of the method proposed can be seen in the high percentage of images obtained with a discrepancy δ < 5 (96% and 99% in our and a different image base, respectively). The results also confirm the hypothesis that the ONH contour can be properly approached with a non-deformable ellipse. Another important aspect of the method is that it directly provides the parameters characterising the shape of the papilla: lengths of its major and minor axes, its centre of location and its orientation with regard to the horizontal position.Publicación Introducing modularity and homology in grammatical evolution to address the analog electronic circuit design problem(IEEE, 2020-08-24) Castejón, Federico; Carmona, Enrique J.We present a new approach based on grammatical evolution (GE) aimed at addressing the analog electronic circuit design problem. In the new approach, called multi-grammatical evolution (MGE), a chromosome is a variable-length codon string that is divided into as many partitions as subproblems result from breaking down the original optimization problem: circuit topology and component sizing in our case. This leads to a modular approach where the solution of each subproblem is encoded and evolved in a partition of the chromosome. Additionally, each partition is decoded according to a specific grammar and the final solution to the original problem emerges as an aggregation result associated with the decoding process of the different partitions. Modularity facilitates the encoding and evolution of the solution in each subproblem. On the other way, homology helps to reduce the potentially destructive effect associated with standard crossover operators normally used in GE-based approaches. Seven analog circuit designs are addressed by an MGE-based method and the obtained results are compared to those obtained by different methods based on GE and other evolutionary paradigms. A simple parsimony mechanism was also introduced to ensure compliance with design specifications and reduce the number of components of the circuits obtained. We can conclude that our method obtains competitive results in the seven circuits analyzed.Publicación Modeling, localization, and segmentation of the foveal avascular zone on retinal OCT-angiography images(IEEE, 2020-08-17) Carmona, Enrique J.; Díaz González, Macarena; Novo, Jorge; Ortega, MarcosThe Foveal Avascular Zone (FAZ) is a capillary-free area that is placed inside the macula and its morphology and size represent important biomarkers to detect different ocular pathologies such as diabetic retinopathy, impaired vision or retinal vein occlusion. Therefore, an adequate and precise segmentation of the FAZ presents a high clinical interest. About to this, Angiography by Optical Coherence Tomography (OCT-A) is a non-invasive imaging technique that allows the expert to visualize the vascular and avascular foveal zone. In this work, we present a robust methodology composed of three stages to model, localize, and segment the FAZ in OCT-A images. The first stage is addressed to generate two FAZ normality models: superficial and deep plexus. The second one uses the FAZ model as a template to localize the FAZ center. Finally, in the third stage, an adaptive binarization is proposed to segment the entire FAZ region. A method based on this methodology was implemented and validated in two OCT-A image subsets, presenting the second subset more challenging pathological conditions than the first. We obtained localization success rates of 100% and 96% in the first and second subsets, respectively, considering a success if the obtained FAZ center is inside the FAZ area segmented by an expert clinician. Complementary, the Dice score and other indexes (Jaccard index and Hausdorff distance) are used to measure the segmentation quality, obtaining competitive average values in the first subset: 0.84 ± 0.01 (expert 1) and 0.85 ± 0.01 (expert 2). The average Dice score obtained in the second subset was also acceptable (0.70 ± 0.17), even though the segmentation process is more complex in this case.Publicación On the effect of feedback in multilevel representation spaces for visual surveillance tasks(Elsevier, 2009-01) Carmona, Enrique J.; Martínez Campos, Javier; Mira Mira, José; Rincón Zamorano, Mariano; Bachiller Mayoral, Margarita; Martínez Tomás, RafaelIn this work we propose a general top–down feedback scheme between adjacent description levels to interpret video sequences. This scheme distinguishes two types of feedback: repair-oriented feedback and focus-oriented feedback. With the first it is possible to improve the system's performance and produce more reliable and consistent information, and with the second it is possible to adjust the computational load to match the aims. Finally, the general feedback scheme is used in different examples for a visual surveillance application which improved the final result of each description level by using the information in the higher adjacent level.Publicación Robust multimodal registration of fluorescein angiography and optical coherence tomography angiography images using evolutionary algorithms(Elsevier, 2021-07) Martínez Río, Javier; Carmona, Enrique J.; Cancelas, Daniel; Novo, Jorge; Ortega, MarcosOptical coherence tomography angiography (OCTA) and fluorescein angiography (FA) are two different vascular imaging modalities widely used in clinical practice to diagnose and grade different relevant retinal pathologies. Although each of them has its advantages and disadvantages, the joint analysis of the images produced by both techniques to analyze a specific area of the retina is of increasing interest, given that they provide common and complementary visual information. However, in order to facilitate this analysis task, a previous registration of the pair of FA and OCTA images is desirable in order to superimpose their common areas and focus the gaze on the regions of interest. Normally, this task is manually carried out by the expert clinician, but it turns out to be tedious and time-consuming. Here, we present a three-stage methodology for robust multimodal registration of FA and superficial plexus OCTA images. The first one is a preprocessing stage devoted to reducing the noise and segmenting the main vessels in both types of images. The second stage uses the vessel information to do an approximate registration based on template matching. Lastly, the third stage uses an evolutionary algorithm based on differential evolution to refine the previous registration and obtain the optimal registration. The method was evaluated in a dataset with 172 pairs of FA and OCTA images, obtaining a success rate of 98.8%. The best mean execution time of the method was less than 5 s per image.Publicación Simultaneous segmentation of the optic disc and fovea in retinal images using evolutionary algorithms(Springer, 2021-03) Carmona, Enrique J.; Molina Casado, José MaríaIn this work, we present a new methodology to simultaneously segment anatomical structures in medical images. Additionally, this methodology is instantiated in a method that is used to simultaneously segment the optic disc (OD) and fovea in retinal images. The OD and fovea are important anatomical structures that must be previously identified in any image-based computer-aided diagnosis system dedicated to diagnosing retinal pathologies that cause vision problems. Basically, the simultaneous segmentation method uses an OD-fovea model and an evolutionary algorithm. On the one hand, the model is built using the intra-structure relational knowledge, associated with each structure, and the inter-structure relational knowledge existing between both and other retinal structures. On the other hand, the evolutionary algorithm (differential evolution) allows us to automatically adjust the instance parameters that best approximate the OD-fovea model in a given retinal image. The method is evaluated in the MESSIDOR public database. Compared with other recent segmentation methods in the related literature, competitive segmentation results are achieved. In particular, a sensitivity and specificity of 0.9072 and 0.9995 are respectively obtained for the OD. Considering a success when the distance between the detected and actual center is less than or equal to η times the OD radius, the success rates obtained for the fovea are 97.3% and 99.0% for η = 1=2 and η = 1 and, respectively. The segmentation average time per image is 29.35 s.Publicación Solving differential equations with Fourier series and Evolution Strategies(Elsevier, 2012-09) Chaquet, José M.; Carmona, Enrique J.A novel mesh-free approach for solving differential equations based on Evolution Strategies (ESs) is presented. Any structure is assumed in the equations making the process general and suitable for linear and nonlinear ordinary and partial differential equations (ODEs and PDEs), as well as systems of ordinary differential equations (SODEs). Candidate solutions are expressed as partial sums of Fourier series. Taking advantage of the decreasing absolute value of the harmonic coefficients with the harmonic order, several ES steps are performed. Harmonic coefficients are taken into account one by one starting with the lower order ones. Experimental results are reported on several problems extracted from the literature to illustrate the potential of the proposed approach. Two cases (an initial value problem and a boundary condition problem) have been solved using numerical methods and a quantitative comparative is performed. In terms of accuracy and storing requirements the proposed approach outperforms the numerical algorithm.Publicación Using covariance matrix adaptation evolution strategies for solving different types of differential equations(Springer, 2019-03-15) Chaquet, José M.; Carmona, Enrique J.A novel mesh-free heuristic method for solving differential equations is proposed. The new approach can cope with linear, nonlinear, and partial differential equations (DE), and systems of DEs. Candidate solutions are expressed using a linear combination of kernel functions. Thus, the original problem is transformed into an optimization problem that consists in finding the parameters that define each kernel. The new optimization problem is solved applying a Covariance Matrix Adaptation Evolution Strategy. To increase the accuracy of the results, a Downhill Simplex local search is applied to the best solution found by the mentioned evolutionary algorithm. Our method is applied to 32 differential equations extracted from the literature. All problems are successfully solved, achieving competitive accuracy levels when compared to other heuristic methods. A simple comparison with numerical methods is performed using two partial differential equations to show the pros and cons of the proposed algorithm. To verify the potential of this approach with a more practical problem, an electric circuit is analyzed in depth. The method can obtain the dynamic behavior of the circuit in a parametric way, taking into account different component values.Publicación Using genetic algorithms to improve the thermodynamic efficiency of gas turbines designed by traditional methods(Elsevier, 2012-11) Chaquet, José M.; Carmona, Enrique J.; Corral, RoqueA method for optimizing the thermodynamic efficiency of aeronautical gas turbines designed by classical methods is presented. This method is based in the transformation of the original constrained optimization problem into a new constrained free optimization problem which is solved by a genetic algorithm. Basically, a set of geometric, aerodynamic and acoustic noise constraints must be fulfilled during the optimization process. As a case study, the thermodynamic efficiency of an already optimized by traditional methods real aeronautical low pressure turbine design of 13 rows has been successfully improved, increasing the turbine efficiency by 0.047% and reducing the total number of airfoils by 1.61%. In addition, experimental evidence of a strong correlation between the total number of airfoils and the turbine efficiency has been observed. This result would allow us to use the total number of airfoils as a cheap substitute of the turbine efficiency for a coarse optimization at the first design steps.