Social media semantic perceptions on Madrid Metro system: Using Twitter data to link complaints to space

Osorio-Arjona, Joaquín, Horak, Jiri, Svoboda, Radek y García-Ruiz, Yolanda . (2021) Social media semantic perceptions on Madrid Metro system: Using Twitter data to link complaints to space. Sustainable Cities and Society, Volume 64, 2021, 102530

Ficheros (Some files may be inaccessible until you login with your e-spacio credentials)
Nombre Descripción Tipo MIME Size
Osorio_Arjona_Joaquin_Social_media_semantic.pdf Osorio Arjona_Joaquin_Social media semantic.pdf application/pdf 7.93MB

Título Social media semantic perceptions on Madrid Metro system: Using Twitter data to link complaints to space
Autor(es) Osorio-Arjona, Joaquín
Horak, Jiri
Svoboda, Radek
García-Ruiz, Yolanda
Materia(s) Geografía
Abstract Social networks are platforms widely used by travelers who express their opinions about many services like public transport. This paper investigates the value of texts from social networks as a data source for detecting the spatial distribution of problems within a public transit network by geolocating citizens' feelings, and analyzes the effects some factors such as population or income have over that spatial spread, with the goal of developing a more intelligent and sustainable public transit service. For that purpose, Twitter data from the Madrid Metro account is collected over a two-month period. Topics and sentiments are identified from text mining and machine learning algorithms, and mapped to explore spatial and temporal patterns. Lastly, a Geographically Weighted Regression model is used to explore the causality of the spatial distribution of complaining users, by using official data sources as exploratory variables. Results show Twitter users tend to be mid-income workers who reside in peripheral areas and mainly tweet when traveling to workplaces. The main detected problems were punctuality and breakdowns in transfer stations or in central areas, mainly in the early morning of weekdays, and affected by density of points of interest in destination areas.
Palabras clave Twitter
Public transport
Text mining
Sentiment analysis
Geographically Weighted Regression
Editor(es) Elsevier
Fecha 2021-01-01
Formato application/pdf
Identificador bibliuned:DptoGEO-FGH-Articulos-Josorio-0002
http://e-spacio.uned.es/fez/view/bibliuned:DptoGEO-FGH-Articulos-Josorio-0002
DOI - identifier https://doi.org/10.1016/j.scs.2020.102530
ISSN - identifier 2210-6707; eISSN: 2210-6715
Nombre de la revista Sustainable Cities and Society
Número de Volumen 64
Publicado en la Revista Sustainable Cities and Society, Volume 64, 2021, 102530
Idioma eng
Versión de la publicación publishedVersion
Tipo de recurso Article
Derechos de acceso y licencia http://creativecommons.org/licenses/by-nc-nd/4.0
info:eu-repo/semantics/openAccess
Tipo de acceso Acceso abierto
Notas adicionales The registered version of this article, first published in Sustainable Cities and Society, Volume 64, 2021, 102530, is available online at the publisher's website: Elsevier, https://doi.org/10.1016/j.scs.2020.102530
Notas adicionales La versión registrada de este artículo, publicado por primera vez en Sustainable Cities and Society, Volume 64, 2021, 102530, está disponible en línea en el sitio web del editor: Elsevier, https://doi.org/10.1016/j.scs.2020.102530

Tipo de documento: Artículo de revista
Collections: Departamento de Geografía. (UNED). Artículos
Set de artículo
Set de openaire
 
Versiones
Versión Tipo de filtro
Contador de citas: Google Scholar Search Google Scholar
Estadísticas de acceso: 38 Visitas, 21 Descargas  -  Estadísticas en detalle
Creado: Mon, 05 Feb 2024, 23:29:31 CET