Evaporation-driven solutocapillary flow of thin liquid films over curved substrates

Rodríguez-Hakim, Mariana, Barakat, Joseph M., Shi, Xingyi, Shaqfeh, Eric S. G. y Fuller, Gerald G. . (2019) Evaporation-driven solutocapillary flow of thin liquid films over curved substrates. Physical Review Fluids Vol. 4 (3), 034002

Ficheros (Some files may be inaccessible until you login with your e-spacio credentials)
Nombre Descripción Tipo MIME Size
RODRIGUEZ_HAKIM_Mariana_EvaporationDrivenSolu.pdf RODRIGUEZ_HAKIM_Mariana_EvaporationDrivenSolu.pdf application/pdf 2.11MB

Título Evaporation-driven solutocapillary flow of thin liquid films over curved substrates
Autor(es) Rodríguez-Hakim, Mariana
Barakat, Joseph M.
Shi, Xingyi
Shaqfeh, Eric S. G.
Fuller, Gerald G.
Materia(s) Física
Abstract Evaporative loss of a volatile solvent can induce concentration inhomogeneities that give rise to spatial gradients in surface tension and subsequent solutocapillary Marangoni flows. This phenomenon is studied in the context of ultrathin liquid films resting atop curved convex substrates in contact with a fluid reservoir. Experiments are conducted with low-molecular-weight polydimethylsiloxane (silicone oil) mixtures composed of a volatile solvent and trace amounts of a nonvolatile solute. A theoretical model based on the thin-film approximation is developed, incorporating the effects of evaporative mass loss, gravity, capillarity, van der Waals forces, species diffusion, and Marangoni stresses. The spatiotemporal evolution of this system is studied by modulating the rate of evaporation of the volatile species and the bulk solute volume fraction in the mixture. The experiments and accompanying numerical simulations reveal that both Marangoni stresses and stabilizing van der Waals interactions between the substrate and the free surface can induce flow reversal and film regeneration. Their relative contribution is modulated by the solutocapillary Marangoni number, which is proportional to the bulk concentration of nonvolatile species in the mixture. Furthermore, it is revealed that increasing the rate of evaporation enhances the volumetric flow rate from thicker, solvent-rich areas towards thinner, solute-rich regions of the film. Although quantitative differences between the theory and the experiments are observed within certain ranges of the controlled parameters, the model qualitatively reproduces the flow regimes observed in the experiments and elucidates the complex interplay among the various physical forces.
Editor(es) American Physical Society
Fecha 2019-03-13
Formato application/pdf
Identificador bibliuned:DptoFF-FCIE-Articulos-Mrodriguez-0001
http://e-spacio.uned.es/fez/view/bibliuned:DptoFF-FCIE-Articulos-Mrodriguez-0001
DOI - identifier https://doi.org/10.1103/PhysRevFluids.4.034002
ISSN - identifier 2469-990X
Nombre de la revista Physical Review Fluids
Número de Volumen 4
Número de Issue 3
Publicado en la Revista Physical Review Fluids Vol. 4 (3), 034002
Idioma eng
Versión de la publicación publishedVersion
Tipo de recurso Article
Derechos de acceso y licencia http://creativecommons.org/licenses/by/3.0/deed.en
info:eu-repo/semantics/openAccess
Tipo de acceso Acceso abierto
Notas adicionales The registered version of this article, first published in Physical Review Fluids Vol. 4 (3), 034002, is available online at the publisher's website: American Physical Society, https://doi.org/10.1103/PhysRevFluids.4.034002
Notas adicionales La versión registrada de este artículo, publicado por primera vez en Physical Review Fluids Vol. 4 (3), 034002, está disponible en línea en el sitio web del editor: American Physical Society, https://doi.org/10.1103/PhysRevFluids.4.034002

Tipo de documento: Artículo de revista
Collections: Departamento de Física Fundamental (UNED). Artículos
Set de artículo
Set de openaire
 
Versiones
Versión Tipo de filtro
Contador de citas: Google Scholar Search Google Scholar
Estadísticas de acceso: 30 Visitas, 10 Descargas  -  Estadísticas en detalle
Creado: Mon, 05 Feb 2024, 20:07:43 CET