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Evaporative loss of a volatile solvent can induce concentration inhomogeneities that
give rise to spatial gradients in surface tension and subsequent solutocapillary Marangoni
flows. This phenomenon is studied in the context of ultrathin liquid films resting atop
curved convex substrates in contact with a fluid reservoir. Experiments are conducted
with low-molecular-weight polydimethylsiloxane (silicone oil) mixtures composed of a
volatile solvent and trace amounts of a nonvolatile solute. A theoretical model based
on the thin-film approximation is developed, incorporating the effects of evaporative
mass loss, gravity, capillarity, van der Waals forces, species diffusion, and Marangoni
stresses. The spatiotemporal evolution of this system is studied by modulating the rate of
evaporation of the volatile species and the bulk solute volume fraction in the mixture. The
experiments and accompanying numerical simulations reveal that both Marangoni stresses
and stabilizing van der Waals interactions between the substrate and the free surface can
induce flow reversal and film regeneration. Their relative contribution is modulated by
the solutocapillary Marangoni number, which is proportional to the bulk concentration of
nonvolatile species in the mixture. Furthermore, it is revealed that increasing the rate of
evaporation enhances the volumetric flow rate from thicker, solvent-rich areas towards
thinner, solute-rich regions of the film. Although quantitative differences between the
theory and the experiments are observed within certain ranges of the controlled parameters,
the model qualitatively reproduces the flow regimes observed in the experiments and
elucidates the complex interplay among the various physical forces.

DOI: 10.1103/PhysRevFluids.4.034002

I. INTRODUCTION

Solutocapillary Marangoni flows arise when a nonuniform distribution of chemical species in
solution creates gradients in surface tension. Perhaps the most well-known example is the tears of
wine phenomenon, in which surface-tension gradients are induced by a concentration imbalance
of water and ethanol [1,2]. Solutal Marangoni flows are also prevalent in spin-cast polymer films
[3], thin coatings [4], and paints [5–7]. Understanding how these flows couple to other physical
processes, such as evaporation and pressure-driven flow, has both fundamental and practical value
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[8,9]. In the coating application, for example, it is often desirable to apply smooth homogeneous
liquid films that dry uniformly. However, there are instances in which defects such as craters and
ridges form as a result of nonuniform drying [4–7]. Spatial inhomogeneities in species concentration
are established due to the different rates of evaporation of each component in the mixture. Since
surface tension depends on the local species concentration at the interface, concentration gradients
in turn induce surface-tension gradients and subsequent Marangoni flows.

Early theoretical and experimental studies were conducted in an effort to understand the domi-
nant mechanisms that give rise to surface-tension gradients in drying paint layers. An experimental
study of the leveling kinetics of decorative paints was conducted by Overdiep [5], who identified
solvent evaporation as the driving force for the development of inhomogeneities in the applied layer
thickness. These effects were also studied theoretically by Howison et al. [6], Evans et al. [7], and
Eres et al. [4], who derived mathematical models based on classical lubrication theory for paints
consisting of a volatile solvent and a nonvolatile resin. Since the resin has, in these cases, a higher
surface tension than the solvent, Marangoni stresses drive flow from thicker, solvent-rich regions
of the film to thinner, resin-rich areas. In addition to evaporation and solutocapillarity, the effects
of viscosification, solvent diffusivity, gravity, and capillarity were incorporated. Simulations for
periodic geometries were conducted using initial layer thicknesses on the order of tens of microns
and initial resin concentrations of around 50 vol %.

Evaporation-induced Marangoni stresses can give rise to flow reversal and instability in thin
liquid films. Hu and Larson discovered a reversal of the coffee-ring effect, whereby a recirculatory
(thermocapillary) Marangoni flow drives solute particles towards the centerline of an evaporating
sessile droplet [10–12]. The same effect can be achieved in multicomponent droplets through the
analogous solutocapillary mechanism [13,14]. de Gennes was the first to predict (using scaling
arguments) a solutocapillary instability in polymeric films with a volatile solvent [3]. Significantly,
he claimed that the proposed instability should dominate over thermally driven (Bénard-Marangoni)
instabilities below the glass-transition temperature, provided that the polymer does not adsorb to the
solution free surface. Serpetsi and Yiantsios later expounded upon de Gennes’s work by performing
direct numerical calculations (as well as a linear stability analysis) of a two-component liquid with
a slowly evaporating solvent [15]. Their study revealed that, at dilute solute concentrations, spatial
and temporal oscillations in the film thickness can arise due to the synergistic interplay between
capillary-pressure and surface-tension gradients. The minimum surface-tension gradient required
for the onset of flow reversal, that is, flow against the pressure gradient, is a function of the rate of
evaporation. It was found that increasing the rate of evaporation has a complex effect on the reversal
behavior, as it accelerates the formation of surface-tension gradients and the rate of viscosification,
which respectively enhances and dampens film-thickness oscillations [4–7,15].

The effect of substrate slope and curvature can have surprising consequences in solutocapillary
flows, particularly in cases where a thin film deposited on the substrate is in contact with a bulk
reservoir of liquid. Essentially, the inclined or curved geometry creates differentials in film thickness
and film curvature between a thin meniscus region and a thicker bulk region, which in turn introduce
additional pressure gradients that are not observed in horizontal films [16]. Parks and Wayner
[17] developed a model to study surface-tension-driven flow of an evaporating film composed
of 98% decane and 2% tetradecane over a heated inclined silicon wafer. They showed that even
small quantities of a nonvolatile impurity (tetradecane) could enhance surface stress, producing
markedly different film profiles than those which would occur in pure decane. Quantitative studies
of the classical tears of wine phenomenon were later carried out by Fournier and Cazabat [2] and
Vuilleumier et al. [18]. In these works, curved or tilted planar glass substrates were partially sub-
merged in mixtures of water and ethanol at varying volume fractions. As surface-tension gradients
developed due to the changing alcohol concentration, a thin liquid film (20–100 μm in thickness)
was observed to climb vertically upward along the meniscus region, away from the fluid reservoir.
Fanton and Cazabat later derived a simple expression for the velocity of a fluid front climbing
up a vertically inclined plane, solely under the action of evaporation-induced solutocapillary
stresses [19]. Although their model did not account for additional pressure gradients arising from
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gravitational or capillary effects, their results quantitatively agreed with experimental observations
for alkane mixtures and water-ethanol systems. The stability characteristics of evaporating thin films
spreading over inclined plates in contact with a bulk fluid reservoir were studied in detail by Hosoi
and Bush [20], revealing a rich spectrum of flow behavior (longitudinal rolls, laterally drifting ridge
structures, falling tears, and vertically propagating transverse waves).

The aforementioned studies have unequivocally demonstrated the presence and basic mechanism
of evaporation-driven solutocapillary flows in relatively simple geometries. However, several
important questions remain. For one, it remains unclear at what point Marangoni stresses begin
to dominate over other physical forces (e.g., pressure forces) in the presence of evaporation. This
issue is particularly relevant in very thin films at low concentrations of a nonvolatile impurity,
wherein Marangoni stresses are expected to be relatively weak. Virtually all of the studies mentioned
above have focused on films thicker than a micron, with solute concentrations above 2 vol %.
However, many spin-coating processes and microfabrication technologies rely on the application
of highly uniform submicron films (in some cases, at very dilute concentrations of a solute species).
Moreover, liquid films of submicron thickness are commonly found in biological systems [21–23].
One example is the human tear film, which has a thickness between 0.5 and 5.0 μm and an average
dissolved protein concentration of roughly 9 mg/mL (approximately 0.1 wt.%) [21,24].

Second, the influence of nonhydrodynamic (e.g., van der Waals) forces on the film dynamics
remains only partially understood. Such forces are expected to become significant in ultrathin
films with dimensions on the order of 100 nm [16]. van der Waals forces mediated through the
liquid can give rise to disjoining (or conjoining) pressures between the substrate and free surface,
which can stabilize (or destabilize) the film depending on the chemical nature of the substrate-liquid
pair [25,26]. Although there has been a plethora of studies on the role of van der Waals forces in
dewetting phenomena [27–34], the influence of a disjoining pressure between the substrate and free
surface has not yet been examined in the context of solutocapillary phenomena.

Finally, the role of the contact line on the dynamics of evaporating thin films remains a significant
(and, in some cases, obfuscating) issue. It is well known that the specific nature of the contact
line can have dramatic consequences on thin-film flows [9,35]. Many interesting observations of
solutocapillary phenomena are intrinsically associated with the so-called contact-line pinning, an
important example being the aforementioned coffee-ring reversal phenomenon [12,13]. Oftentimes,
the contact line (and contact angle) is highly sensitive to the experimental conditions, including
substrate roughness, cleanliness, and wettability [36], and may obscure interpretation of thin-film
measurements. It is therefore desirable to eliminate the effect of the contact line in circumstances
where other physical driving forces (evaporation, surface-tension gradients, and pressure gradients)
are of interest.

In this article we utilize both experiments and theory to understand the synergistic action of
evaporation, pressure, and surface tension in creating and sustaining solutocapillary flows in thin
films of a binary liquid mixture containing trace amounts of a nonvolatile species. A previously
reported apparatus, the dynamic fluid-film interferometer [37], is utilized in the present study to
examine the evolution of thin films on spherical convex substrates in contact with a fluid reservoir.
The geometry used in this study includes no pinned contact lines and allows for axisymmetric
liquid motions. In our experiments, a bulk liquid mixture continuously supplies fluid to a thin film
through a delicate interplay of evaporation, pressure-driven flow (due to both capillary action and
van der Waals forces), and solutocapillary Marangoni flow. The use of a convex surface allows
liquid to accumulate at the substrate apex, providing a useful platform for tracking fluid fluxes.
We analyze the importance of these various physical effects by complementing our experiments
with a numerical model rooted in thin-film theory. In particular, we restrict our attention to stable
axisymmetric flows, leaving consideration of unstable asymmetric flows to a possible future study.

The remainder of the article is organized as follows. In Sec. II we describe the experimental
setup and introduce the relevant geometric and material properties that govern the flow physics.
Experiments are conducted using binary silicone-oil mixtures deposited onto optical lenses of
constant radius of curvature. In Sec. III a theoretical model for the spatiotemporal evolution of
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FIG. 1. (a) The dynamic fluid-film interferometer, a custom-built apparatus [37], is used to create thin
liquid films between a spherical solid substrate and an initially planar free surface. Labeled components in the
figure correspond to 1, Delrin chamber; 2, fused-silica substrate; 3, substrate holder; 4, motorized actuator; 5,
light source; 6, top camera; and 7, DFI cover. (b) On the bottom, white-light interferometry is used to map
color images recorded from the top camera to film thickness profiles. On the top, an image-processing script is
used to visualize the spatiotemporal evolution of the entrained liquid film.

the film thickness and solute concentration is developed under the auspices of thin-film theory. The
model takes into account the effects of gravity, capillarity, van der Waals forces, species diffusion,
and Marangoni stresses. The effects of densification and viscosification, arising from differences in
material properties between the two liquid species, are not incorporated into the model. The resulting
system of evolution equations is solved numerically using the finite-difference method. In Sec. IV
we compare our experimental measurements to the theoretical predictions. A discussion of our re-
sults is given in Sec. V. We find that the model qualitatively reproduces the flow regimes observed in
the experiments and reveals the dominant driving forces. A tug-of-war between pressure-driven flow
and Marangoni flow is modulated by the solutocapillary Marangoni number, which is proportional to
the concentration of nonvolatile species in the mixture. The rate of evaporation qualitatively affects
these dynamics and controls the rate at which solutocapillary stresses are generated. Quantitative
differences between the theory and the experiments are observed; we attribute these differences to
the simplifying assumptions made in the model, as well as uncertainties in the values of some of the
dimensionless parameters. Suggestions for improvements of the model, directions for future study,
and concluding remarks are given in Sec. VI.

II. EXPERIMENT

A. Apparatus

Experiments are carried out using the dynamic fluid-film interferometer (DFI), a custom-built
apparatus [37]. The DFI, shown in Fig. 1(a), was slightly modified from that which is described
in [37] to better accommodate experiments with solid substrates. The setup consists primarily of a
Delrin chamber, which is filled with a silicone fluid. A spherical UV-fused silica planoconvex lens
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TABLE I. Physical properties of silicone oils. The kinematic viscosity ν, dynamic viscosity μ, density ρ,
surface tension γ , and refractive index n are obtained from data sheets supplied by the manufacturer (at 25 ◦C).
The evaporative velocity E was measured at liquid temperatures of 27 ◦C.

ν μ ρ γ n E Supplier
(cSt) [kg/(m s)] (kg/m3) (mN/m) (μm/s)

0.65 0.49 760 15.9 1.375 1.3 ShinEtsu DM-Fluid
1.00 0.82 818 16.9 1.382 0.13 ShinEtsu DM-Fluid
1.50 1.28 852 17.7 1.387 0.023 ShinEtsu DM-Fluid
5.00 4.58 915 19.7 1.396 0.0001 Clearco PSF
10.0 9.35 935 20.1 1.399 – Clearco PSF

with a radius of curvature of a = 7.6 mm (Lattice Electro Optics UF-PX-12.5-15-532) was chosen
as the substrate material in order to prevent the oleic film from dewetting.

The substrate is initially held in place in the dome holder and the desired solution is pipetted into
the chamber. A motorized actuator (Newport TRA12PPD) vertically positions the chamber relative
to the substrate. In order to locate the air-liquid interface (the z = 0 plane), the chamber is lowered
in small increments at a velocity of 0.15 mm/s, bringing the substrate closer to the free surface.
Interference patters start to appear at the interface when the dome apex lies less than 4 μm below the
interface. This vertical position is taken as z = 0. The chamber is then raised until the dome apex
is submerged in the liquid at a distance of b = 0.3 mm below the planar air-liquid interface. The
dome remains in place for 20 s, during which the user begins recording the video. At time t = 0 s,
the motor lowers the chamber by 0.35 mm at a velocity of U = 0.05 mm/s, until the substrate apex
comes to rest 50 μm above the z = 0 plane (a total transit time of t∗ = 7 s). A procedural exception
is made for the most volatile solvent (0.65 cSt; see Table I), wherein the chamber is initially lowered
by a distance of 0.33 mm to offset evaporative losses incurred during the 20-s waiting period. The
chamber is subsequently held in a fixed position for the remainder of the experiment. Further details
on the experimental protocol can be found in the Supplemental Material [38].

As the substrate penetrates through the air-liquid interface, it captures a thin liquid film
[Fig. 1(b)]. The interface is illuminated with a light source (CCS Inc. LAV-80SW2) and pho-
tographed with a camera (Imaging Development Systems UI-3080CP). If the film thickness falls
below ∼10 μm, reflection interference leads to observable color patterns (see the Supplemental
Material [38] for representative videos). These data can be used to calculate the thickness of the
interstitial fluid between the solid substrate and the air-liquid interface within a 15-nm range of
uncertainty [Fig. 1(b)]. However, reflections from the glass substrate’s surface only allow us to
accurately determine film thicknesses above 90 nm. A cover with acrylic sidewalls is placed around
the entire setup to minimize film thickness fluctuations associated with sporadic convection in the
upper air phase. The cover has a mesh top to allow for evaporation throughout the course of the
experiment.

In order to determine the minimum film thickness deposited over the glass substrate, addi-
tional experiments were conducted for pure silicone oils using ellipsometry (Horiba UVISEL
Spectroscopic Phase Modulated Ellipsometer), an optical technique that measures the change in
polarization of light as it reflects and transmits through different layers of a stratified sample. In
these experiments, the spherical UV-fused silica substrate was entirely submerged in a bath of
pure volatile silicone oil; the glass substrate was cleaned with acetone and plasma treated (Diener
Pico oxygen plasma cleaner) prior to all ellipsometric measurements. Some of this oil was then
pipetted out until the top surface of the lens was exposed to the air, capturing a microscopic film
of oil that was allowed to evaporate to nanoscopic dimensions. The bottom portion of the lens
remained submerged in the oil bath, providing a bulk fluid reservoir and mimicking the experimental
conditions of the DFI. The thickness of the captured oil film was determined from the difference
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between measurements before and after immersion in the silicone oil. Sample ellipsometric data are
presented in the Supplemental Material [38].

B. Silicone-oil mixtures

Binary mixtures of low-molecular-weight silicone oils (polydimethylsiloxane) are chosen as
model liquids due to their good chemical stability and Newtonian behavior. During an experiment,
the temperature of the silicone oils was measured to be 27 ◦C. This measurement is slightly higher
than room temperature due to the radiant heat generated by the light source (the light intensity was
not varied throughout all experiments). A thermal camera [FLIR T650sc with close-up IR lens,
5.8× (100 μm)] was used to show that temperature variations at the liquid-air interface, which
can potentially induce undesired thermocapillary flows, are absent (see [39] and the Supplemental
Material [38] for thermocapillary data).

Some relevant physical properties of the silicone oils are presented in Table I. Important material
properties, including the kinematic viscosity ν, dynamic viscosity μ, density ρ, surface tension γ ,
and refractive index n, are obtained from data sheets provided by the supplier. The refractive index
of the volatile component was used for all film thickness calculations, since changes in n caused by
concentration variations have a negligible effect on the calculated film thicknesses. A human error
of ±15 nm (for films thicker than 100 nm) has been previously estimated by Frostad et al. based on
the minimum band spacing in the interpreted color interference pattern [37].

In order to characterize the volatility of each oil, separate measurements are performed (see the
Supplemental Material [38] for evaporation data). The Delrin chamber was filled with a pure oil
and exposed to the light source. The total liquid mass was recorded as a function of time, from
which the total mass flux (per unit area of free surface) was calculated. By dividing the measured
mass flux by the liquid density, the volumetric flux per unit area E was computed. This quantity
is reported in Table I for different oils. For the liquids studied, an increase in solvent viscosity of
0.5 cSt approximately corresponds to an order of magnitude reduction in the evaporative velocity.

Three different binary liquid mixtures consisting of a volatile solvent (ShinEtsu DM-Fluid)
and a nonvolatile solute (Clearco PSF) are used in the experiments. As is common practice in
industry, each silicone oil will be hereafter identified using the value of its kinematic viscosity
(in units of centistokes). The solvent-solute pairs used in the experiments are 0.65 cSt/5.00 cSt,
1.00 cSt/5.00 cSt, and 1.50 cSt/10.0 cSt. The bulk volume fraction of the solute species is
denoted by φ∞ and is varied in the range 0.01%–0.50%. Evaporation-driven solutocapillary flows
are studied by varying φ∞ (by changing the fraction of the high-molecular-weight species in the
mixture) and E (by exchanging out the solvent) in the experiments. Increasing φ∞ has the effect of
enhancing Marangoni stresses induced by gradients in surface tension, whereas E controls the rate
of evaporation.

III. THEORY

A. Governing equations

A model for the spatiotemporal evolution of the evaporating liquid film over a curved substrate is
formulated under the auspices of lubrication theory. A schematic of the model geometry, consisting
of a solid sphere of radius a = 7.6 mm submerged in a binary liquid mixture with a free surface, is
shown in Fig. 2. The origin is positioned in the plane of the undeformed free surface, directly above
the sphere’s center. A cylindrical coordinate system (r, θ, z) is adopted, where r is the radial distance
from the centerline, θ is the azimuthal angle, and z is the axial distance from the undeformed
plane. Gravity points in the −z direction and has acceleration g = 9.8 m/s2. In order to replicate
the experiment, the position of the sphere apex z = −hs(t ) is advanced in a ramp-hold sequence,

hs(t ) = b − U [t − (t − t∗)H (t − t∗)], (1)
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FIG. 2. Schematic of the model geometry.

where b = 0.3 mm, U = 0.05 mm/s, t∗ = 7 s, and H (t ) is the unit step function. At times t < 0, the
apex of the sphere is held fixed at a vertical height z = −b. At t = 0, the sphere translates upward
with constant velocity U . The film thins through the translation until the sphere apex reaches its
final position z = Ut∗ − b at t = t∗, after which thinning continues as the solvent evaporates with
characteristic flux E .

In the experiments, the substrate translates slowly relative to the timescale of free-surface shape
relaxation, i.e., the capillary number Ca = μU/γ0, calculated using the solvent viscosity μ and
surface tension γ0, is typically of O(10−6) (see Table II). Consequently, the thickness of the film that
is captured at t = t∗ is small compared to the initial separation b. Our numerical calculations indicate
that the thickness of this captured film scales with a

√
Ca, in agreement with scaling arguments

made by Frostad et al. [37]. We therefore define the characteristic captured-film thickness as h∗ =
a
√

Ca. Crucially, lubrication theory is expected to give a good approximation of the flow physics
for times t � 0 so long as the ratios b/a and h∗/a = √

Ca are both small compared to unity (in our
experiments, b/a = 0.04 and h∗/a = 0.001-0.002).

We assume that the system remains rotationally symmetric about the z axis, so gradients with
respect to θ may be neglected. Under the lubrication approximation, the evolution of the film

TABLE II. Values of the dimensionless parameters used in the experiments, tabulated for different
silicone-oil mixtures (see Table I for oil properties). In all experiments, a = 7.6 mm, b = 0.3 mm, and U =
0.05 mm/s. The species diffusivity is estimated to be D � 10−10 m2/s. The Hamaker constant is estimated to be
A � 10−19 J.

0.65 cSt 1.00 cSt 1.50 cStSolvent-solute pair 5.00 cSt 5.00 cSt 10.0 cSt

Ca 1.6 × 10−6 2.4 × 10−6 3.6 × 10−6

Bo 3.4 × 10−2 4.3 × 10−2 5.2 × 10−2

Ha ∼10−6 ∼10−6 ∼10−6

Pe ∼103 ∼103 ∼103

Ma/φ∞ 1.9 × 102 1.1 × 102 7.1 × 101

Ev 2.6 × 10−2 2.6 × 10−3 4.6 × 10−4
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thickness h(r, t ) and solute-species concentration φ(r, t ) is governed by the local mass balance

∂h

∂t
+ 1

r

∂

∂r

[
rh

(
h

2μ

∂γ

∂r
− h2

3μ

∂ p

∂r

)]
= −E (1 − φ) (2)

and species mass balance

∂ (hφ)

∂t
+ 1

r

∂

∂r

[
rhφ

(
h

2μ

∂γ

∂r
− h2

3μ

∂ p

∂r
− D

∂ ln φ

∂r

)]
= 0, (3)

where μ is the solvent viscosity, D is the solute-species diffusivity, γ (r, t ) is the surface tension, and
p(r, t ) is the dynamic pressure. Under isothermal conditions, the surface tension is solely a function
of the chemical composition of the free surface. We assume here that γ is related to φ by the simple
linear law

γ = γ0 + (γ1 − γ0)φ, (4)

where γ0 and γ1 are the surface tensions of the pure solvent (φ = 0) and pure solute (φ = 1),
respectively. Thus, γ can be eliminated from the previous equations by use of (4). A balance of
normal stresses at the upper free surface yields the expression for the pressure

p = γ0

[
2

a
− 1

r

∂

∂r

(
r
∂h

∂r

)]
+ ρg(h − h∞) − A

6πh3
, (5)

where ρ is the solvent density, A is the Hamaker constant, and

h∞(r, t ) = hs(t ) + r2

2a
− E (1 − φ∞)t (6)

is the parabolic approximation of the film thickness in the far field [recall that hs is given by (1)].
Here the far field corresponds to the bulk fluid region where the depth is large compared to the
thin-film region. In Eq. (5) we have approximated the London–van der Waals force by a disjoining
pressure acting on the upper free surface, 	 = −A/6πh3. This expression applies to nonionic liquid
films with thicknesses �10 Å resting atop high-energy surfaces, such as glass [26,31,32,40]. The
initial and boundary conditions for (2), (3), and (5) are

h = h∞, φ = φ∞ at t = 0, (7a)

∂h

∂r
= 0,

∂φ

∂r
= 0,

∂ p

∂r
= 0 at r = 0, (7b)

h = h∞, φ = φ∞, p = 0 as r → ∞. (7c)

A complete derivation of the preceding equations can be found in the Supplemental Material
[38].

Some discussion of the physical meaning of the terms appearing in Eqs. (2)–(5) are in order.
Solvent evaporation, which appears as a sink on the right-hand side of (2), concentrates the solute
φ at a rate E (1 − φ)/h. The normal stress balance (5) prescribes the dynamic pressure p in the
liquid, which contains contributions due to capillarity, gravity, and van der Waals forces. Capillary
forces play a role wherever there are variations in surface curvature, which naturally appear in this
geometry (the free surface conforms to the curvature of the substrate near the centerline, whereas it
flattens in the far field). Gravitational forces (modulated by the force density ρg) are necessary
to weigh down the surface in the far field, or else the shape of the free surface would not be
bounded [41]. However, gravity plays a comparably weaker role (relative to capillarity and van der
Waals forces) in the vicinity of the centerline, where the film is much thinner. For the air–silicone
oil–glass system, the Hamaker constant A is positive and the resulting disjoining pressure 	 is
negative, which has the effect of drawing fluid into films that become precipitously thin. A positively
valued Hamaker constant A > 0 corresponds to complete wetting of the substrate by the liquid film,
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denoting a repulsive interaction between the substrate and the free surface. Thus, London–van der
Waals forces act to stabilize the film, preventing the onset of dewetting. The terms appearing inside
the large parentheses in Eqs. (2) and (3) have units of a volumetric flux per unit distance. The
pressure flux −(h2/3μ)(∂ p/∂r), Marangoni flux (h/2μ)(∂γ /∂r), and diffusive flux −D(∂ ln φ/∂r)
compete in advecting the total volume per unit area of solvent (1 − φ)h and solute φh.

At this point, it behooves us to address some of the simplifying assumptions made in the above
model. First, we have assumed a rather simple evaporation model where the rate of evaporation
−E (1 − φ) depends linearly on the solvent volume fraction with a constant coefficient. A more
sophisticated (albeit more complicated) model would consider the coupled transport of the volatile
species in both the liquid and vapor phases, from which the rate of evaporation is calculated from the
concentration profiles at the free surface. Second, we have approximated the density and viscosity
of the mixture by the solvent properties ρ and μ, respectively, which precludes the possibility of
spatial variations in density and viscosity induced by concentration inhomogeneities. Even though
prior work has examined the dependence of viscosity on mixture composition [4,6,7], we have
decided to neglect these contributions and exclusively focus on the effects of changing φ(r, t ) on
the Marangoni flux. We have similarly assumed the surface tension γ to be well approximated by γ0

in the first term on the right-hand side of (5). These approximations are expected to be valid at dilute
solute concentrations φ 	 1. Third, the simple mixture rule (4) does not necessarily give an accurate
measure of the true variation in γ with respect to changes in φ; it only provides a linear interpolation
between the two limiting values at φ = 0 and 1. This linearized relationship is commonly used
in the literature [3,4,15,17] and captures the leading-order effects induced by changes in surface
tension. Finally, we have incorporated species diffusion and intermolecular forces by introducing
the additional parameters D and A, which are not known and must be estimated. Despite these
simplifications, the initial-boundary-value problem (2)–(7) includes contributions from evaporation,
Marangoni stresses, species diffusion, capillarity, gravity, and intermolecular forces in the coupled
nonlinear transport of h(r, t ), φ(r, t ), and p(r, t ). Thus, we expect the model to qualitatively capture
physical phenomena observed in the experiments.

B. Scalings and dimensionless parameters

The preceding equations are cast into dimensionless form through a proper choice of charac-
teristic concentration, length, velocity, and pressure scales. The obvious choice for a concentration
scale is φ∞, the bulk solute volume fraction. Since we are most interested in the film dynamics
after cessation of the sphere’s motion (t � t∗), the captured-film thickness h∗ = a

√
Ca = a

√
μU/γ0

is a natural choice of transverse (axial) length scale. The associated lateral (radial) length scale
is

√
ah∗, chosen based on the curvature of the substrate so that the lubrication approximation is

strictly valid in the region where r = O(
√

ah∗). Balancing the pressure with the capillary stress
in Eq. (5) then yields γ0/a as a characteristic pressure scale. Finally, lubrication theory yields
(h∗)3(γ0/a)/μah∗ = U as the (axial) velocity scale. Interestingly, the substrate velocity U emerges
as the proper velocity scale in spite of the fact that the motion of the substrate ceases after t = t∗.
This is a direct consequence of the fact that the captured-film thickness h∗ depends on the rate at
which the substrate penetrates the z = 0 plane.

Using the aforementioned scales, we introduce the dimensionless variables

φ = φ

φ∞
, h = h

h∗ = h

a
√

Ca
, r = r√

ah∗ = r

aCa1/4 ,

p = h∗2 p

μUa
= ap

γ0
, t = Ut

h∗ =
√

Caγ0t

μa
, (8)

where we have eliminated h∗ = a
√

Ca in favor of the capillary number Ca = μU/γ0, which
contains the dependence on the substrate velocity U . By introducing (8) into (1)–(7), we obtain
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the dimensionless equations

∂h

∂t
+ 1

r

∂

∂r

[
rh

(
Mah

2

∂φ

∂r
− h

2

3

∂ p

∂r

)]
= −Ev(1 − φ∞φ), (9)

∂ (hφ)

∂t
+ 1

r

∂

∂r

[
rhφ

(
Mah

2

∂φ

∂r
− h

2

3

∂ p

∂r
− 1

Pe

∂ ln φ

∂r

)]
= 0, (10)

p = 2 − 1

r

∂

∂r

(
r
∂h

∂r

)
+ Bo(h − h∞) − Ha

h
3 , (11)

with

h = h∞, φ = 1 at t = 0, (12a)

∂h

∂r
= 0,

∂φ

∂r
= 0,

∂ p

∂r
= 0 at r = 0, (12b)

h = h∞, φ = 1, p = 0 as r → ∞, (12c)

where

h∞(r, t ) = b − t + (t − t∗)H (t − t∗) + r2

2
− Ev(1 − φ∞)t, (13)

with b = b/a
√

Ca and t∗ = √
Caγ0t∗/μa. In Eqs. (9)–(13) we have introduced the following

dimensionless parameters:

Ca = μU

γ0
(capillary number), (14a)

Bo = ρgah∗

γ0
= ρga2

√
Ca

γ0
(Bond number), (14b)

Ha = Aa

6πh∗3γ0
= A

6πa2Ca3/2γ0
(dimensionless Hamaker constant), (14c)

Pe = Ua

D
(Péclet number), (14d)

Ma = φ∞(γ1 − γ0)h∗

μUa
= φ∞(γ1 − γ0)

√
Ca

μU
(Marangoni number), (14e)

Ev = E

U
(dimensionless evaporative velocity). (14f)

A description of the physical meaning of the dimensionless groups (14) is in order. The capillary
number Ca defines the ratio of viscous stresses to capillary (i.e., surface-tension) stresses and thus
gauges the ability of the free surface to deform in response to the motion of the substrate. The Bond
number Bo is the square of the ratio between the characteristic radial length scale

√
ah∗ and the

capillary length
√

γ0/ρg, which in turn sets the distance from the centerline at which gravitational
forces become relevant to surface deformation. The dimensionless Hamaker constant Ha quantifies
the importance of van der Waals forces (relative to capillary forces) in stabilizing the liquid film
from rupture. The Péclet number Pe gauges the relative rates of species advection and diffusion.
The Marangoni number Ma is the ratio between solutocapillary stresses induced by surface-tension
gradients and viscous stresses induced by fluid flow. Finally, the dimensionless evaporative velocity
Ev gauges the relative rates of evaporation and the lateral fluid flux.

Values of the dimensionless parameters (14) used in the experiments are reported in Table II. The
parameters a, b, U , μ, ρ, γ0, γ1, E , and φ∞ are either measured or controlled in the experiments
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U(t − t∗)/h∗
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h
0
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Ca = 2.4 × 10−6, Bo = 4.3 × 10−2

Ca = 7.3 × 10−6, Bo = 4.3 × 10−2

Ca = 3.5 × 10−5, Bo = 4.1 × 10−2

FIG. 3. Comparison of the numerical computations (dashed lines) to experimental measurements (solid
lines) for pure silicone fluids in the absence of evaporation. Lines and error bars in the experimental data
represent the mean and standard deviation, respectively, of repeated measurements (duplicates or triplicates).
The blue data are for ν=1 cSt, U=0.05 mm/s, t∗=7 s, and b=0.3 mm; green data for ν=1 cSt, U = 0.15 mm/s,
t∗ = 2.3 s, and b = 0.3 mm; and red data for ν = 5 cSt, U = 0.15 mm/s, t∗ = 2.3 s, and b = 0.3 mm.

(see Sec. I). The other parameters D and A are estimated based on previous literature. The
species diffusivity D � 10−10 m2/s is extrapolated from data for different high-viscosity silicone
oil mixtures [42]. Separately performed ellipsometry measurements indicate that the minimum
film thickness lies in the range 10–20 Å for pure evaporating 1.00-cSt silicone oils (see the
Supplemental Material [38]). For disjoining pressures dominated by van der Waals forces and taking
into consideration the approximate molecular sizes of our silicone oils, the Hamaker constant for
our system is estimated to be approximately A � 10−19 J [26,40].

C. Numerical method

Equations (9)–(12) are integrated numerically using the finite-difference method. Equation (10)
is weakly parabolic at large Pe. As such, special care must be taken in the discretization of this
equation so as to avoid numerical instabilities associated with sharp gradients in φ. We found that
solving for g = ln φ instead of φ removes such instabilities. This approach was inspired in part by
theoretical progress in other fields, including turbulence [43] and flow of polymeric liquids [44,45].

The nonlinear partial differential equations (9)–(11) are first linearized and subsequently dis-
cretized onto a radial grid. A coordinate transformation is used in order to cluster grid points near
r = 0. Partial derivatives with respect to r are replaced by second-order accurate difference analogs;
time advancement is carried out using a Crank-Nicolson scheme with adaptive control of the step
size. At each time level, the linearized equations form a bipentadiagonal system, which can be
efficiently solved by direct elimination. Newton iteration is carried out until the solution converges
(a typical tolerance is the square of the time step size). Verification tests were performed to ensure
that the model reproduced analytical solutions in the small deformation limit (a2Ca/b2 	 1) (see
[46] and the Supplemental Material [38] for additional details on the numerical method and the
small deformation analysis).

The numerical model was validated against experiments with pure silicone oils. Evaporation
was suppressed by placing a glass cover directly over the Delrin chamber. In this simplified system,
the model reduces to the solution of (9) and (11) for the film thickness h(r, t ) with φ = 0. The
substrate velocity was varied from U = 0.05 to 0.15 mm/s to obtain a range of Ca. Figure 3 shows
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FIG. 4. Time series of experimental film thickness profiles are plotted for 1.00 cSt/5.00 cSt blends (Ev =
2.6 × 10−3) at Ma = 0.011 (φ∞ = 0.01%), Ma = 0.107 (φ∞ = 0.10%), and Ma = 0.320 (φ∞ = 0.30%), as
determined experimentally. Snapshots of the interferometric patterns, viewed from the top camera, are shown
at the corresponding times and compositions. Experiments show the presence of three distinct flow regimes:
the van der Waals regime (solid line), the intermediate regime (dashed line), and the capillary regime (dotted
line).

a plot of the centerline film thickness h0 ≡ h(0, t ) for three parameter sets, wherein quantitative
agreement between the experiments and theory was achieved at long times. At short times, there is
a discrepancy in the initial film thickness, due to difficulty in interpreting interference patterns at
large thicknesses.

IV. RESULTS

Below we present our experimental and theoretical results. Our main objective is to determine the
effects of varying the solute concentration (i.e., the Marangoni number Ma) and solvent volatility
(i.e., the dimensionless evaporative velocity Ev) on the thin-film dynamics.

A. Film profiles

Figure 4 shows experimental measurements of the dimensionless film thickness h = h/h∗ plotted
against the dimensionless radius r = r/

√
ah∗ at different time points t = tU/h∗ = 50, 160, 310,

and 700, along with the corresponding interferometric patterns. The measurements were obtained
using a 1.00 cSt/5.00 cSt mixture (Ev = 2.6 × 10−3) at three different solute concentrations (Ma =
0.011, 0.107, and 0.320). Only axisymmetric profiles are observed in the experiments. Azimuthal
instabilities were not observed, although it is well known that problems related to the spreading
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FIG. 5. Time series of the dimensionless film thickness h(r, t ), solute concentration φ(r, t ), and dimen-
sionless dynamic pressure p(r, t ) profiles at three different Marangoni numbers Ma = 0.011 (φ∞ = 0.01%),
Ma = 0.107 (φ∞ = 0.10%), and Ma = 0.320 (φ∞ = 0.30%), as determined theoretically. The other dimen-
sionless parameters used in the numerical calculations are Ca = 2.4 × 10−6, Pe = 103, Bo = 4.3 × 10−2,
Ha = 1.6 × 10−6, and Ev = 2.6 × 10−3.

of thin films due to surface-tension gradients are often susceptible to hydrodynamic instabilities
[18–20,47–51]. Asymmetries are only observed at higher Ma or when the rate of solvent evaporation
is instantaneously suppressed (see the Supplemental Material [38] for examples of instabilities
observed).

Figure 5 shows theoretical predictions of the dimensionless film thickness h, solute concentration
φ, and dimensionless dynamic pressure p = ap/γ0 for the same parameters shown in Fig. 4. Many
of the same features observed in the experimentally measured film-thickness profiles are reproduced
in Fig. 5. The measured and simulated profiles elucidate three distinct regimes of flow. Namely,
at low Ma (van der Waals regime) the film thins to nanoscopic dimensions and remains nearly
uniform; at intermediate Ma (intermediate regime), a mound forms at the centerline, surrounded
by a nanoscopic fluid layer, and grows over time; at high Ma (capillary regime), the film remains
microscopically thick and grows over time. Further details regarding the three regimes are provided
in Secs. IV A 1–IV A 3 below.

Additional experiments were conducted with 0.65- and 1.50-cSt solvents (see the Supplemental
Material [38] for representative videos). Varying the rate of evaporation changes the range of Ma
where each of the three regimes is observed. Most notably, it was observed that incrementing the
rate of evaporation broadens the range of Ma in the intermediate regime, where a viscous mound is
stabilized by a nanoscopically thin film. We hypothesize that this occurs because the timescale of
solvent depletion due to evaporation becomes smaller compared to the diffusive timescale (Pe−1 	
Ev), attenuating the effects of diffusion in homogenizing concentration gradients. Larger values of
Ev also lead to more rapid fluid depletion, which ensures that a nanoscopic film will be present at
higher Ma.
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1. van der Waals regime: Evaporation to a nanoscopic film

At low Ma (Ma = 0.011 in Figs. 4 and 5), the liquid evaporates and forms a nearly uniform film
of nanoscopic dimensions, but never dewets the substrate (dark blue color in Fig. 4). van der Waals
forces are expected to play a significant role in this region due to the small separation between the
substrate and free surface. A weak, radially inward flux draws fluid towards the centerline, which
stabilizes the film.

Ellipsometric measurements reveal that the thickness of the nanoscopic film lies between 10 and
20 Å for a pure 1.00-cSt silicone oil. These results confirm that the thin fluid film present in the
van der Waals regime is still subject to long-range forces and that modeling these interactions via a
disjoining pressure of the form given in Eq. (5) is an acceptable approximation. If the film thins to
molecular dimensions (� 10 Å), short-range interactions such as steric effects come into play and
quantitative formulas for these interactions are unavailable [31,40].

The coupled evolution of φ and p in Fig. 5 elucidates the dominant driving forces during film
evolution. At Ma = 0.011 in Fig. 5, evaporation of the low-molecular-weight solvent enriches
the high-molecular-weight solute near the centerline (φ = 1 at later times). Solute concentration
gradients become very steep within a narrow transition region separating the thin film from the
bulk. Despite these steep gradients, the Marangoni flux Ma(h/2)(∂φ/∂r) is relatively weak due
to the smallness of h; solutocapillary forces alone are not responsible for stabilizing the film.
Concomitantly, the dimensionless pressure p drops to negative values in the thin-film region
(where h nearly vanishes), indicating a strong disjoining pressure due to the intermolecular
interaction between the substrate and the free surface. The pressure flux due to intermolecular

forces −(Ha/h
2
)(∂h/∂r), which scales inversely with h

2
, is large compared to the aforementioned

Marangoni flux, indicating that disjoining pressure is responsible for stabilizing the film at low Ma.
At long times, the theory predicts a dimensional apical thickness of 5 nm for Ma = 0.011. This
value is in agreement with the nanoscopic film thickness as measured via ellipsometry.

2. Intermediate regime: Formation of a solute-rich mound stabilized by a nanoscopic film

At intermediate Ma (Ma = 0.107 in Figs. 4 and 5), the film initially evaporates and forms a
nanoscopic layer of thickness comparable to that in the van der Waals regime. After some time
(t = 300–500), a viscous mound (microns in thickness) forms at the centerline above the substrate
apex, surrounded by a nanoscopically thin fluid layer about 150 μm wide. The thickness of this
nanoscopic layer increases from about 10–20 Å prior to mound formation to �100 nm after mound
formation, as evidenced in the change in color from dark to lighter blue in Fig. 4. The mound
continues to grow in height and volume over time.

As Ma is increased, solute enrichment near r = 0 is diminished and different contributions to
the dimensionless pressure p come into play. Namely, positive pressures (p > 0) indicate strong
capillary forces, whereas negative pressures (p < 0) indicate strong intermolecular forces. On
examining the intermediate-Ma case (Ma = 0.107 in Fig. 5), it is apparent that the formation
of a microscopically thick mound results in a locally dominant capillary pressure (gravity is
comparably weak). This result is corroborated by our experiments, in which the observed mounds
have a spherical-cap geometry. In the thin-fluid layer surrounding the mound, disjoining pressure
dominates. The pressure flux forcing fluid out of the (solute-enriched) mound and into the (solute-
depleted) thin-fluid layer is offset by the Marangoni flux drawing fluid inward, due to the gradient
in the solute concentration. Consequently, the mound volume grows as a function of time.

3. Capillary regime: Rapid film regeneration

At high Ma (Ma = 0.320 in Figs. 4 and 5), the mixture contains a higher fraction of the
nonvolatile component and solutocapillary flows are induced at earlier times. Consequently, the film
does not have enough time to deplete to form a nanoscopic layer. Fluid is continuously regenerated
to the film and the solute-enriched mound [defined as the region between the apex at r = 0 and the
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location of minimum film thickness R at h(R, t ) = hmin] forms as a result of the balance between
Marangoni and capillary forces. Moreover, the rate of film thickening is much higher than at
lower Ma (about a twofold increase between Ma = 0.107 and 0.320). Referring to the simulations
in Fig. 5, the pressure is completely dominated by the capillary contribution, which results in a
qualitatively different film profile. In this regime, the film profile resembles liquid drainage between
two foam bubbles, wherein a dimple forms at the centerline and is surrounded by a barrier ring [52].
The theory overpredicts both the centerline film thickness h0 and minimum film thickness hmin in
this regime.

B. Growth rates

In this section we quantify the evolution of the centerline film thickness. Figures 6 and 7 show
plots of the dimensionless centerline film thickness h0 = h(0, t )/h∗ as a function of dimensionless
time t , as determined via experiment and theory, respectively. The experiments were performed
using a 1.00 cSt/5.00 cSt mixture (the same solvent-solute combination reported in Fig. 4) over a
range of solute concentrations, resulting in a fixed evaporation rate (Ev = 2.6 × 10−3) and a range
of Marangoni numbers (Ma = 0.021–0.320). Since the exact value of the Hamaker constant for
our systems is unknown, the simulations were conducted at two different values of Ha in order to
obtain a range of possible film thicknesses h0. It is important to emphasize that the experimental
accuracy of the interferometer only allows us to determine film thicknesses within a 15-nm range
of uncertainty [37]; consequently, dimensionless film thicknesses below h � 7.5 × 10−3 cannot be
resolved in our measurements.

Both experiment and theory indicate that increasing Ma tends to increase the rate of film growth.
The mechanism of acceleration was described in the preceding section: A higher Marangoni flux
assists in the formation and stabilization of a solute-enriched mound bordered by a nanoscopically
thin film. As Ma is increased further, the rate of growth of the solute-enriched mound increases
and the nanoscopic film disappears. Similar trends were reported by Fanton and Cazabat, wherein
increasing the concentration of a nonvolatile constituent in an evaporating mixture enhanced the
propagation of a liquid front via solutocapillary flow [19].

Our numerical calculations indicate that at sufficiently high Ma (Ma = 0.213–0.320 in Fig. 7),
the thin film bordering the mound begins to withdraw fluid from the mound at some point during
film growth. For the cases Ma = 0.213, 0.266, and 0.320 shown in Fig. 7, fluid withdrawal occurs
at t � 590, 350, and 250, respectively, whereupon the film grows at a slower rate due to enhanced
capillary forces. This effect is not seen in the experiments reported in Fig. 7, wherein the thin film
bordering the mound is maintained over the course of the experiment. We have performed additional
experiments at higher values of Ma (given in the Supplemental Material [38]) and have observed
fluid withdrawal from the mound into the bordering thin-film region. In these experiments, the
sudden withdrawal induces a symmetry-breaking instability near the minimum film thickness hmin,
resulting in undulations in the film thickness around the perimeter of the mound. It is important to
note that all experimental data shown in this paper correspond to axisymmetric profiles, prior to the
development of any flow instability.

It is noteworthy that the growth curves shown in Fig. 7 collapse onto each other at high Ma,
whence the growth of h0 becomes insensitive to changes in Ma and is mostly controlled by the rate of
evaporation (Ev). This trend is observed in the experiments at high Ma (Fig. 6, Ma = 0.213, 0.266,
and 0.320), wherein the growth rates are not strongly affected by changes in Ma. Quantitatively, the
theoretical calculations slightly overpredict the centerline film thickness h0 when Ma is large, for
the particular value of Ev reported in Figs. 6 and 7.

At lower Ma, the theory underpredicts the film growth rate and thickness (about an order of
magnitude discrepancy in h0). In this van der Waals regime, the pressure profiles indicate a dominant
disjoining-pressure contribution and the solute concentration φ is not small (see the Ma = 0.011
case in Fig. 5, where φ increases to unity near r = 0). The modest film growth at low Ma, according
to the theoretical predictions, is due entirely to a pressure gradient induced by van der Waals forces.
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FIG. 6. Plot of the experimental centerline film thickness h0 = h(0, t )/h∗ against time t for a 1.00
cSt/5.00 cSt mixture (Ev = 2.6 × 10−3) at several values of the Marangoni number Ma = 0.021–0.320
(φ∞ = 0.02%–0.30%). The other dimensionless parameters for a 1.00 cSt/5.00 cSt mixture are reported
in Table II. Experimental data cannot be obtained for thicknesses below the dotted line at h � 7.5 × 10−3

(h � 90 nm). Error bars represent the standard deviation obtained from multiple data sets.

FIG. 7. Plot of the theoretical centerline film thickness h0 = h(0, t )/h∗ against time t for several values of
the Marangoni number Ma = 0.021–0.320 (φ∞ = 0.02%–0.30%). The solid lines correspond to Ha = 1.6 ×
10−5, the dashed lines correspond to Ha = 1.6 × 10−6, and the region in between two curves of the same
color is shaded to guide the eye. The other dimensionless parameters are Ca = 2.4 × 10−6, Pe = 103, Bo =
4.3 × 10−2, and Ev = 2.6 × 10−3, corresponding to a 1.00 cSt/5.00 cSt mixture (reported in Table II).
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However, the larger growth rates measured in the experiments suggest a stronger driving force for
film flow, potentially due to a stronger Marangoni flux than that which is predicted theoretically.

It is expected that several assumptions of the model break down at low Ma due to the fact that
φ is not small locally. For example, the mixture properties cannot be accurately approximated by
the solvent properties (ρ, μ, and γ0). Between the pure solvent (φ = 0) and pure solute (φ = 1),
the fluid density can increase by at most 20%, while the viscosity can undergo a tenfold increase.
Moreover, the simple linear relationship (4) relating γ and φ breaks down when φ is not small. The
slope of the O(φ) term, which is estimated to be the difference in surface tensions γ1 − γ0, may also
be inaccurate. These errors are compounded by the uncertainties in D and A, which may introduce
quantitative (though not qualitative) changes to the rate of film growth.

C. Mound volume and flux

The centerline film thickness h0 gives a measure of film growth, but cannot quantify the
volumetric flux of material into the solute-enriched apical mound. For the axisymmetric profiles
considered here, we quantify the volumetric flux by defining the mound volume

V (t ) = 2π

∫ R

0
h(r, t )r dr, (15)

where R is the mound radius, defined by h(R, t ) = hmin, the minimum film thickness. We define
the time at which the mound forms (i.e., when V begins to increase as a function of time) by
t = tM , whence V (tM ) = VM . The volumetric flow rate into the mound is given by dV/dt . By mass
conservation,

dV

dt
= d (V − VM )

d (t − tM )
≈ −πR2E (1 − φM ) + 2πRq, (16)

where φM is the solute concentration in the mound and

q =
(

h3

3μ

∂ p

∂r
− h2

2μ

∂γ

∂r

)∣∣∣∣
r=R

(17)

is the net volumetric flux per unit circumference. Equation (16) can be obtained by multiplying (2)
by 2πrdr, integrating from r = 0 to R (assuming R is a weak function of t), and approximating
φ ≈ φM = const in 0 � r � R (i.e., neglecting the dependence of φ on r inside the mound volume).
Thus, the rate of change of V gives an aggregate measure of the net evaporation of solvent
through the projected area πR2 and the net influx of fluid (due to pressure and surface-tension
gradients) through the perimeter 2πR. Rendering r, t , and h dimensionless according to (8) yields
the dimensionless variables V = V/[πa(h∗)2], V M = VM/[πa(h∗)2], and tM = tMU/h∗.

Figure 8 shows experimental measurements and simulation data of the dimensionless excess
mound volume flux dV /dt plotted against Ma at three different values of Ev, corresponding to
the three silicone oil blends presented in Table II. For all values of Ev, the flow rate increases
with increasing Ma, in agreement with our previous results. The data fall within the intermediate
and capillary regimes, as discussed previously. (Since little to no mound formation is observed
in the van der Waals regime, a mound volume flux cannot be computed.) In all of the reported
experimental measurements, the mound volume grows linearly with time throughout the duration
of each experiment and thus the flux dV /dt is approximately constant with time. By contrast, in
the theoretical calculations the dimensionless volume varies nonlinearly with time. The simulation
values reported in Fig. 8 correspond to the flux at t = tM , the inception point of mound formation.
For the simulation data, two values of Ha are shown for comparison, since the Hamaker constant A
is uncertain in the experimental measurements.

The intermediate regime is where the film thins to a nanoscopic thickness, followed by significant
film regeneration and mound volume growth. In accord with the experimental results outlined in
Sec. IV A, the range of Ma in the intermediate regime decreases with decreasing evaporation rate.
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FIG. 8. Experimental and simulation data of the dimensionless mound volume flux dV /dt =
(1/ah∗U )(dV/dt ) against Ma for 1.50 cSt/10.0 cSt (Ev = 4.6 × 10−4), 1.00 cSt/5.00 cSt (Ev = 2.6 × 10−3),
and 0.65 cSt/5.00 cSt (Ev = 2.6 × 10−2) mixtures. Other relevant dimensionless parameters appear in Table II.
The symbols W©, I©, and C© stand for the van der Waals, the intermediate, and the capillary regimes, respectively.
The closed squares correspond to experimental measurements and the error bars represent the standard
deviation obtained from multiple data sets. In all of the experimental measurements reported, the dimensionless
mound volume V increases linearly with time. For each value of Ev in the simulations, two values of Ha
are shown for comparison. Simulation data are shown by circles for low Ha and by crosses for high Ha.
In the numerical computations, V typically increases nonlinearly with time; thus, the symbols represent the
finite-difference approximant of dV /dt at t = tM , the inception point of mound formation.

For all three evaporation rates, the simulations underpredict the mound volume flux when compared
to the experiments. We attribute the quantitative differences between theory and experiment to errors
associated with the simplifying assumptions made in the model (see Sec. IV B). For a given value
of Ma, the mound volume flux increases with the evaporation rate. From examining the first term
on the right-hand side of (16), it would appear that increasing Ev would result in a decreasing flow
rate. However, increasing Ev also increases the flow rate through coupling between evaporation and
the pressure- and surface-tension-driven fluxes. In other words, the direct contribution of solvent
evaporation to the rate of change of the mound volume is small relative to the indirect contribution
through coupling with the flux. Similar trends are seen in [4], where higher rates of evaporation
cause surface-tension gradients to develop at earlier times, leading to a faster film growth.

As Ma increases, we move into the capillary regime, where the dominant contribution to the
pressure comes from capillarity. In this regime, the theory suggests a stronger dependence of dV /dt
on Ma than what is observed in the experiments [Figs. 8(b) and 8(c)]. These discrepancies are likely
not associated with uncertainties in the Hamaker constant, since at high Ma the fluxes become
insensitive to Ha. However, since the evolution of the film thickness and solute concentration is
highly nonlinear and fully coupled, it is not clear at present which of these simplifications are most
significant.

V. DISCUSSION

Evaporation of a pure silicone oil over a glass substrate uniformly depletes the liquid down to a
nanoscopically thin film that is stabilized by a disjoining pressure. For a binary mixture of silicone
oils, evaporation of the volatile component preferentially concentrates the nonvolatile solute in re-
gions where the liquid film is thinnest. Thus, the thin-film region experiences larger changes in com-
position as compared to the bulk. Gradients in solute concentration in turn create gradients in surface
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tension that drive Marangoni flows. In the mixtures studied presently, the solute-rich areas have
larger surface tensions because the nonvolatile solute has a higher surface tension than the solvent.

Qualitative agreement between the experiments and the theoretical predictions was obtained.
Namely, the dependence of the film dynamics on the solutocapillary Marangoni number Ma and
the dimensionless evaporative velocity Ev is reproduced in our model. The theoretical results
show clearly that the transitions between the different flow regimes are distinguished by dominant
contributions to the dynamic pressure and the interplay between pressure- and surface-tension-
driven flows. These different regimes are tuned by the Marangoni number. We found that increasing
Ma increases the flux at the mound radius and hence the rate of film growth, in accord with previous
studies [19]. The theory and the experiments also indicate that within each regime, increasing
Ev increases the rate of film growth and the Marangoni flux through nonlinear coupling. This
effect is augmented at higher Ev because the timescale of solvent depletion during evaporation
becomes small when compared to the diffusive timescale (Pe−1 	 Ev). Since diffusion is incapable
of attenuating gradients in species concentration generated by the evaporating fluid, smaller values
of Ma are sufficient to generate a Marangoni flow that accumulates fluid in an apical mound. The
rate of film growth was quantified in Figs. 6 and 7 (in terms of the centerline height) and in Fig. 8
(in terms of the mound volume flux).

Quantitative differences between the theory and experiments are observed. Specifically, in the
intermediate and the capillary regimes, the model respectively under- and overestimates the excess
mound volume flux for a fixed evaporation rate (Fig. 8). Several explanations were given as to the
failure of the model to quantitatively reproduce what is seen in the experiments. First, we assumed
that the mixture properties could be replaced with properties of the solvent. This simplification is
expected to hold when φ is small. However, as is shown in Fig. 5, φ can approach unity locally
when Ma is small. Weak Marangoni and diffusive fluxes prevent the mixture from rehomogenizing.
Significantly, the viscosities of the two components are not similar; it is expected that solute
accumulation viscosifies the mixture locally.

Second, both the evaporation model and the surface-tension model used in the present study
are simplistic. The former is an approximation of the full mass-transfer problem involving species
transport in both the liquid and vapor phases. The latter was obtained from a linear interpolation
between the two pure-component surface tensions γ1 and γ0. The rate of change of γ per unit
increment in φ is not necessarily equal to the difference γ1 − γ0, as is assumed here. A more
accurate model would require measurements of the surface-tension isotherms as a function of
mixture concentration. Attempts to experimentally obtain this isotherm were made on our part,
in which a pendant bubble of air was suspended in a binary silicone oil solution and the surface
tension was measured as a function of composition. However, since the relative change in surface
tension with composition is quite small, an empirical mixing rule beyond the linear formulation in
Eq. (4) was not revealed.

Uncertainty in the estimated values for the binary diffusivity D and the Hamaker constant A
could also lead to a departure between experiments and the theory. Errors in the binary diffusivity
are expected to matter most when the timescale of species diffusion becomes comparable to
the timescale in which evaporation induces gradients in species concentration. In other words,
uncertainties in D will play a larger role whenever the film thickening-thinning dynamics are
slow. This effect is more pronounced either at low rates of evaporation or at sufficiently low
Ma, when Marangoni effects are weak. Errors in the Hamaker constant A have a greater effect
in the thinner areas of the film where disjoining pressure dominates. To address this issue, we
conducted simulations at two different values of the dimensionless Hamaker constant Ha, covering
the estimated range of A for the silicone oil systems.

Finally, the expression for the disjoining pressure used in Eq. (5) is only valid for films with thick-
nesses �1 nm. Near this limit, short-range interactions may come into play that are not taken into ac-
count in our model. For example, for the parameters in this study, the rate of evaporation is expected
to dramatically decrease when the film thickness � 1 nm [34]. These effects are expected to matter
in the van der Waals regime and at low Ma prior to mound formation in the intermediate regime.
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VI. CONCLUSION

Experiments with binary, low-molecular-weight silicone oil mixtures have revealed the presence
of solutocapillary flows in ultrathin films. Evaporative loss of the volatile solvent leads to concentra-
tion inhomogeneities that give rise to spatial surface-tension gradients. Under these conditions, we
were able to examine the interplay between the rate of evaporation and the bulk solute fraction of the
nonvolatile oil and identify three distinct regimes of behavior. However, experimental measurements
were not able to convey information regarding local surface species concentration and the relative
importance of different physical forces. Thus, we took advantage of the lubrication approximation
to develop a thin-film theory that can simultaneously describe fluid flow and species concentration.

Our experimental and numerical results highlight several general trends. Under all conditions
examined, the film thickness increases for some period of time at the centerline, against the action
of gravitational and capillary forces. There are two driving forces which can account for the flow
reversal: (i) disjoining pressure due to the van der Waals interaction between the substrate and the
upper free surface when the film becomes nanoscopically thin and (ii) Marangoni stresses due to a
solute concentration gradient at the upper free surface. If the dimensionless evaporative velocity Ev
is a control parameter (i.e., the solvent volatility is fixed), then the extent to which these two forces
contribute to flow reversal depends on the magnitude of the Marangoni number Ma (experimentally,
Ma is controlled by the amount of solute initially added to the mixture).

The present work can be extended in several ways. First, improvements to the model (addressing
some or all of the shortcomings mentioned in the discussion) could lead to a more quantitative
comparison. However, we do not expect such changes to modify the essential physics described
by our model. Second, the dependence of the flow physics on the other dimensionless groups, e.g.,
Ca, Bo, Pe, and Ha, could be explored. Additionally, the effect of evaporation in surfactant-laden
flows could be investigated. In systems with soluble surfactants, mass loss due to evaporation
could potentially induce surfactant transport towards the interface, ultimately affecting the surface
distribution of surfactant and the resulting interfacial Marangoni stresses. Finally, it would be
interesting to examine how the results of the present work, which considers the interaction between
solid-liquid and air-liquid interfaces, apply to a system with two air-liquid interfaces, such as the
foam flows considered in Ref. [37]. In such systems, van der Waals forces result in a conjoining
pressure (a destabilizing effect), which would presumably compete with Marangoni stresses. The
reduced traction due to the presence of two mobile surfaces is expected to qualitatively change the
fluid dynamics.
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