Molica Bisci, GiovanniOrtega García, AlejandroLuca Vilasi2025-03-312025-03-312014-01Giovanni Molica Bisci, Alejandro Ortega, Luca Vilasi. “Subcritical nonlocal problems with mixed boundary conditions”. Bull. Math. Sci. 14, no. 1, 2350011 (2024) https://doi.org/10.1142/S166436072350011X1664-3607; eISSN: 1664-3615https://doi.org/10.1142/S166436072350011Xhttps://hdl.handle.net/20.500.14468/26397Esta es la versión aceptada para su publicación en Bulletin of Mathematical Sciences 14, no. 1, 2350011 (2024). La versión final publicada está disponible en World Scientific Publishing, https://doi.org/10.1142/S166436072350011X. This is the accepted version for publication in Bulletin of Mathematical Sciences 14, no. 1, 2350011 (2024). The final published version is available from World Scientific Publishing, https://doi.org/10.1142/S166436072350011X.By using linking and ∇-theorems in this paper we prove the existence of multiple solutions for the following nonlocal problem with mixed Dirichlet–Neumann boundary data, (Formular Presented) where (−Δ)s, s ∈ (1/2, 1), is the spectral fractional Laplacian operator, Ω ⊂ RN, N > 2s, is a smooth bounded domain, λ > 0 is a real parameter, ν is the outward normal to ∂Ω, ΣD, ΣN are smooth (N − 1)-dimensional submanifolds of ∂Ω such that ΣD ∪ ΣN = ∂Ω, ΣD ∩ ΣN = ∅ and ΣD ∩ ΣN = Γ is a smooth (N − 2)-dimensional submanifold of ∂Ω.eninfo:eu-repo/semantics/openAccess12 MatemáticasSubcritical nonlocal problems with mixed boundary conditionsartículoFractional Laplacianvariational methods∇ -theoremsmixed boundary datasuperlinear and subcritical nonlinearities