Vargas Ureña, Antonio Manuel2024-12-132024-12-132024-02-03A.M. Vargas, Solving a fractional chemotaxis system with logistic source using a meshless method, Applied Mathematics Letters, 151, 2024, 109004, https://doi.org/10.1016/j.aml.2024.1090040893-9659https://doi.org/10.1016/j.aml.2024.109004https://hdl.handle.net/20.500.14468/24891The registered version of this article, first published in Applied Mathematics Letters, is available online at the publisher's website: Elsevier, https://doi.org/10.1016/j.aml.2024.109004La versión registrada de este artículo, publicado por primera vez en Applied Mathematics Letters, está disponible en línea en el sitio web del editor: Elsevier, https://doi.org/10.1016/j.aml.2024.109004We study the numerical solution of the fractional Keller–Segel system with logistic source. We derive the discretization of the fractional Laplacian and integer derivatives using a meshless method. A condition for convergence is given and several examples illustrating the dynamics of both fully parabolic and parabolic–elliptic systems on irregular meshes are provided.eninfo:eu-repo/semantics/openAccess12 MatemáticasSolving a fractional chemotaxis system with logistic source using a meshless methodartículoKeller-Segel equationsfractional differential equationschemotaxisMeshless method