Albuquerque, HugoPřenosil, AdamRivieccio, Umberto2024-12-022024-12-022017-07-28Albuquerque, H., Přenosil, A. & Rivieccio, U. An Algebraic View of Super-Belnap Logics. Stud Logica 105, 1051–1086 (2017). https://doi.org/10.1007/s11225-017-9739-70039-3215; e-ISSN: 1572-8730https://doi.org/10.1007/s11225-017-9739-7https://hdl.handle.net/20.500.14468/24636Este es el manuscrito aceptado del artículo. La versión registrada fue publicada por primera vez en Stud Logica 105, 1051–1086 (2017), está disponible en línea en el sitio web del editor: https://doi.org/10.1007/s11225-017-9739-7 This is the accepted manuscript of the article. The registered version was first published in Stud Logica 105, 1051–1086 (2017), it is available online at the publisher's website: https://doi.org/10.1007/s11225-017-9739-7The Belnap–Dunn logic (also known as First Degree Entailment, or FDE) is a well-known and well-studied four-valued logic, but until recently little has been known about its extensions, i.e. stronger logics in the same language, called super-Belnap logics here. We give an overview of several results on these logics which have been proved in recent works by Přenosil and Rivieccio. We present Hilbert-style axiomatizations, describe reduced matrix models, and give a description of the lattice of super-Belnap logics and its connections with graph theory. We adopt the point of view of Abstract Algebraic Logic, exploring applications of the general theory of algebraization of logics to the super-Belnap family. In this respect we establish a number of new results, including a description of the algebraic counterparts, Leibniz filters, and strong versions of super-Belnap logics, as well as the classification of these logics within the Leibniz and Frege hierarchies.eninfo:eu-repo/semantics/openAccess11 LógicaAn algebraic view of super-Belnap logics. Studia Logicaartículosuper-Belnap logicsfour-valued logicparaconsistent logicBelnap–Dunn logicFDELogic of ParadoxKleene logicExactly True logicDe Morgan algebrasAbstract Algebraic LogicLeibniz filtersstrong versions of logics