Salete Casino, EduardoVargas Ureña, Antonio ManuelGarcía, ÁngelNegreanu, MihaelaBenito Muñoz, Juan J.Ureña, Francisco2025-01-072025-01-072020-12-20Salete E, Vargas AM, García Á, Negreanu M, Benito JJ, Ureña F. Complex Ginzburg–Landau Equation with Generalized Finite Differences. Mathematics. 2020; 8(12):2248. https://doi.org/10.3390/math81222482227-7390https://doi.org/10.3390/math8122248https://hdl.handle.net/20.500.14468/25119La versión registrada de este artículo, publicado por primera vez en Mathematics. 2020; 8(12):2248, está disponible en línea en el sitio web del editor: https://doi.org/10.3390/math8122248 The copyrighted version of this article, first published in Mathematics. 2020; 8(12):2248, is available online at the publisher's website: https://doi.org/10.3390/math8122248In this paper we obtain a novel implementation for irregular clouds of nodes of the meshless method called Generalized Finite Difference Method for solving the complex Ginzburg–Landau equation. We derive the explicit formulae for the spatial derivative and an explicit scheme by splitting the equation into a system of two parabolic PDEs. We prove the conditional convergence of the numerical scheme towards the continuous solution under certain assumptions. We obtain a second order approximation as it is clear from the numerical results. Finally, we provide several examples of its application over irregular domains in order to test the accuracy of the explicit scheme, as well as comparison with other numerical methods.eninfo:eu-repo/semantics/openAccess33 Ciencias Tecnológicas::3310 Tecnología industrialComplex Ginzburg–Landau Equation with Generalized Finite DifferencesartículoGinzburg–Landau equationparabolic-parabolic systemsgeneralized finite difference method