Ono, HiroakiraRivieccio, Umberto2024-12-022024-12-022014-06Umberto Rivieccio and Hiroakira Ono, Modal twist-structures over residuated lattices. Logic Journal of the IGPL, 22 (3), 2014, p. 440-457; https://doi.org/10.1093/jigpal/jzt0431367-0751https://doi.org/10.1093/jigpal/jzt043https://hdl.handle.net/20.500.14468/24633Este es el manuscrito aceptado del artículo. La versión registrada fue publicada por primera vez en Logic Journal of the IGPL, 22 (3), 2014, p. 440-457, está disponible en línea en el sitio web del editor: https://doi.org/10.1093/jigpal/jzt043 This is the accepted manuscript of the article. The registered version was first published in Logic Journal of the IGPL, 22 (3), 2014, p. 440-457, is available online at the publisher's website: https://doi.org/10.1093/jigpal/jzt043We introduce a class of algebras, called twist-structures, whose members are built as special squares of an arbitrary residuated lattice. We show how our construction relates to and encompasses results obtained by several authors on the algebraic semantics of non-classical logics. We define a logic that corresponds to our twist-structures and show how to expand it with modal operators, obtaining a paraconsistent many-valued modal logic that generalizes existing work on modal expansions of both Belnap–Dunn logic and paraconsistent Nelson logic.eninfo:eu-repo/semantics/openAccess11 LógicaModal twist-structures over residuated latticesartículoTwist-structureparaconsistent modal logicNelson logicmany-valued logicbilatticeresiduated lattice