Jansana, RamonRivieccio, Umberto2024-12-022024-12-022014-08Umberto Rivieccio and Ramon Jansana, Dualities for modal N4-lattices. Logic Journal of the IGPL, 22 (4), 2014, p. 608-637; https://doi.org/10.1093/jigpal/jzu0021367-0751; e-ISSN: 1368-9894https://doi.org/10.1093/jigpal/jzu002https://hdl.handle.net/20.500.14468/24630Este es el manuscrito aceptado del artículo. La versión registrada fue publicada por primera vez en Logic Journal of the IGPL, 22 (4), 2014, p. 608-637, está disponible en línea en el sitio web del editor: https://doi.org/10.1093/jigpal/jzu002 This is the accepted manuscript of the article. The registered version was first published in Logic Journal of the IGPL, 22 (4), 2014, p. 608-637, is available online at the publisher's website: https://doi.org/10.1093/jigpal/jzu002We introduce a new Priestley-style topological duality for N4-lattices, which are the algebraic counterpart of paraconsistent Nelson logic. Our duality differs from the existing one, due to S. Odintsov, in that we only rely on Esakia duality for Heyting algebras and not on the duality for De Morgan algebras of Cornish and Fowler. A major advantage of our approach is that we obtain a simple description for our topological structures, which allows us to extend the duality to other algebraic structures such as N4-lattices with monotonic modal operators, and also to provide a neighbourhood semantics for the non-normal modal logic corresponding to these algebras.eninfo:eu-repo/semantics/openAccess11 LógicaDualities for modal N4-latticesartículoN4-latticeparaconsistent Nelson logicPriestley dualitytwist-structureEsakia duality